# Astrophysics IV: Stellar and galactic dynamics Solutions 

## Problem 1:

We set up our coordinates such that the slab lays on the $z=0$ plane. As the mass distribution is discontinuous, we cannot easily rely on the Poisson equation to derive the corresponding potential. We instead use Gauss's law:

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=4 \pi G M_{S} \tag{1}
\end{equation*}
$$

where $S$ is any surface and $M_{S}$ is the mass enclosed by the surface $S$. Let us define $S$ to be the surface of a cylinder perpendicular to the plane $z=0$. By symmetry (the surface density of the plane is constant) :

$$
\begin{equation*}
\vec{\nabla} \Phi=\frac{\partial}{\partial z} \Phi(z) \cdot \vec{e}_{z} \quad \text { and } \quad \frac{\partial}{\partial z} \Phi(z)=-\frac{\partial}{\partial z} \Phi(-z) . \tag{2}
\end{equation*}
$$

Thus, in the integral (1) the surface perpendicular to the plane $z=0$ does not contribute and we get :

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=2 \frac{\partial}{\partial z} \Phi(z) \Delta s . \tag{3}
\end{equation*}
$$

where $\Delta s$ is the surface of the cylinder parallel to the plane $z=0$. The mass enclosed in the cylinder is:

$$
\begin{equation*}
M_{S}=\Delta s \Sigma_{0} \tag{4}
\end{equation*}
$$

and (3) with (4) and (1) give :

$$
\begin{equation*}
2 \frac{\partial}{\partial z} \Phi(z) \Delta s=4 \pi G \Delta s \Sigma_{0} \tag{5}
\end{equation*}
$$

This leads to :

$$
\begin{equation*}
\frac{\partial}{\partial z} \Phi(z)=2 \pi G \Sigma_{0} \tag{6}
\end{equation*}
$$

and after integration :

$$
\begin{equation*}
\Phi(z)=2 \pi G \Sigma_{0} z+\text { const. } \tag{7}
\end{equation*}
$$

## Problem 2:

We consider a wire aligned with the $x$ axis. As the mass distribution is discontinuous, we cannot rely on the Poisson equation to derive the corresponding potential. We instead rely on the Gauss Theorem :

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=4 \pi G M_{S} \tag{8}
\end{equation*}
$$

where $S$ is any surface and $M_{S}$ is the mass enclosed by the surface $S$. Let us define $S$ to be the surface of a cylinder of length $\Delta x$ and radius $R$, with its symmetry axis being the axis $x$, i.e., the wire. The surface $\Delta s$ parallel to the $x$ axis is:

$$
\begin{equation*}
\Delta s=2 \pi R \Delta x \tag{9}
\end{equation*}
$$

and the enclosed mass is :

$$
\begin{equation*}
M_{S}=\lambda_{0} \Delta x \tag{10}
\end{equation*}
$$

By symmetry (the linear density of the wire is constant) :

$$
\begin{equation*}
\vec{\nabla} \Phi=\frac{\partial}{\partial R} \Phi(R) \vec{e}_{R} \tag{11}
\end{equation*}
$$

where $\vec{e}_{R}$ is perpendicular to the axis $x$. With (9), (10) and (11), the Gauss theorem becomes:

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=2 \pi R \Delta x \frac{\partial}{\partial R} \Phi(R)=4 \pi G \lambda_{0} \Delta x \tag{12}
\end{equation*}
$$

which leads to :

$$
\begin{equation*}
\frac{\partial}{\partial R} \Phi(R)=2 G \frac{\lambda_{0}}{R} \tag{13}
\end{equation*}
$$

and after integrating over the radius $R$ :

$$
\begin{equation*}
\Phi(R)=2 G \lambda_{0} \ln (R)+\text { const } \tag{14}
\end{equation*}
$$

## Problem 3:



The ellipse equation is given by

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{15}
\end{equation*}
$$

the focii are at

$$
c= \pm \sqrt{a^{2}-b^{2}}
$$

and the eccentricity is defined as

$$
e=\frac{c}{a}
$$

Using these relations, we write

$$
\begin{aligned}
& e^{2}=\frac{c^{2}}{a^{2}}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}} \\
& y^{2}=b^{2}-\frac{b^{2}}{a^{2}} x^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)=\left(1-e^{2}\right)\left(a^{2}-x^{2}\right)
\end{aligned}
$$

We apply a coordinate transformation now: Let $x=x^{\prime}+a e\left(=x^{\prime}+c\right)$. This gives

$$
\begin{equation*}
y^{2}=\left(1-e^{2}\right)\left(a^{2}-\left(x^{\prime}+a e\right)^{2}\right) \tag{16}
\end{equation*}
$$

Now we show that the equation of Keplerian orbits (17) can be written in the same form as (16). The Keplerian orbits are defined as

$$
\begin{equation*}
r(\varphi)=\frac{a\left(1-e^{2}\right)}{1+e \cos (\varphi)} \tag{17}
\end{equation*}
$$

with $x^{\prime}=r \cos (\varphi), y=r \sin (\varphi)$

$$
\begin{aligned}
r(1+e \cos (\varphi)) & =r+e r \cos (\varphi)=r+e x^{\prime} \\
& =a\left(1-e^{2}\right) \\
r^{2} & =a^{2}\left(1-e^{2}\right)^{2}+e^{2} x^{\prime 2}-2 a\left(1-e^{2}\right) e x^{\prime} \\
& =x^{\prime 2}+y^{2} \\
y^{2} & =a^{2}\left(1-e^{2}\right)+x^{\prime 2}\left(e^{2}-1\right)-2 a\left(1-e^{2}\right) e x^{\prime} \\
& =\left(1-e^{2}\right)\left[a^{2}\left(1-e^{2}\right)-x^{\prime 2}-2 a e x^{\prime}\right] \\
& =\left(1-e^{2}\right)\left[a^{2}-a^{2} e^{2}-\left(x^{\prime}+a e\right)^{2}+a^{2} e^{2}\right] \\
& =\left(1-e^{2}\right)\left[a^{2}-\left(x^{\prime}+a e\right)^{2}\right]
\end{aligned}
$$

which is exactly equation (16) again.

## Problem 4:

First law : The orbit of a planet is an ellipse with the Sun at one of the two foci. This was shown in question 1.

Second law : A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. Consider the Sun to be at the centre of the coordinate system and a planet at the position $\vec{x}(t)$ with a velocity $\vec{v}(t)$. Consider first the areas sweeps out during an infinitesimal time $d t$. This area will be:

$$
\begin{equation*}
\delta A=\frac{1}{2}|\vec{x}(t) \times \mathrm{d} \vec{x}(t)|, \tag{18}
\end{equation*}
$$

where $\mathrm{d} \vec{x}=\vec{v} \mathrm{~d} t$. So,

$$
\begin{equation*}
\delta A=\frac{1}{2} \mathrm{~d} t|\vec{x}(t) \times \vec{v}(t)|=\frac{1}{2} \mathrm{~d} t|\vec{L}|, \tag{19}
\end{equation*}
$$

with $\vec{L}$, the angular momentum (consider a body of unit mass). As the latter is conserved in a spherical potential, $\delta A$ is independent of the time and of the position along the orbit. We can thus write for any interval time $\Delta T$ such that $\Delta T=t_{2}-t_{1}$ :

$$
\begin{equation*}
A=\int_{t_{1}}^{t_{2}} \delta A=\frac{1}{2}|\vec{L}| \int_{t_{1}}^{t_{2}} \mathrm{~d} t=\frac{1}{2}|\vec{L}| \Delta T, \tag{20}
\end{equation*}
$$

which demonstrates the law.

Third law : The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. From the previous law, we got a result of the form

$$
A=\frac{1}{2} L \Delta T,
$$

with $L$ the magnitude of the angular momentum of a test particle of unit mass. For a full orbit, $\Delta T \equiv T$ is the period, and $A$ is the area of the ellipse:

$$
A=\pi a b=\pi a^{2} \sqrt{1-e^{2}}
$$

Let us now turn our attention to $L$. There are different ways of calculating it, but we will use the Vis-Viva equation:

$$
v^{2}(r)=G M\left(\frac{2}{r}-\frac{1}{a}\right) .
$$

Let's take, e.g., $r=r_{\text {min }}$ :

$$
v^{2}\left(r_{\min }\right)=G M\left(\frac{2}{r_{\min }}-\frac{1}{a}\right)=G M\left(\frac{2 a-r_{\min }}{r_{\min } a}\right)
$$

but $2 a-r_{\min }$ is $r_{\max }$, and we also have $r_{\min } r_{\max }=b^{2}$. Together we get:

$$
v^{2}\left(r_{\min }\right)=\frac{G M}{a}\left(\frac{b}{r_{\min }}\right)^{2}
$$

So we have

$$
L=L\left(r_{\min }\right)=\sqrt{\frac{G M}{a}} b=\sqrt{\frac{G M}{a}} a \sqrt{1-e^{2}}
$$

Thus the period is

$$
T=\frac{2 A}{L}=2 \frac{\pi a^{2} \sqrt{1-e^{2}}}{\sqrt{\frac{G M}{a}} a \sqrt{1-e^{2}}}=2 \frac{\pi a^{3 / 2}}{\sqrt{G M}}
$$

or

$$
T^{2}=\frac{4 \pi^{2}}{G M} a^{3}
$$

Throughout this exercise, we took a test particle of unit mass to make dealing with the units easier. (Usually, $L=m r v$ and not only $L=r v$ which we used here.)

