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Consider a data set 5 X y p
with each pair x ̅ y E R sampled
e i d from a distribution x ̅ y Assume

E P x ̅ 8 ID

D y x ̅ modeled by the linear function
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ground truth vector Ps Rd

Let
x ̅ I IT Rad

if y y y ER



Leastsquares estimation

In usual least squares estimation
one searches a minimizer End for
the empiral loss quadratic loss

angry Sip

angry E.ly fi4

squared loss
function

argmin J Xp
T

J BβEnd

argminBend I Xp
112

In the exercises we also discuss
a particular kind of regularized least squares



Linear regression with random projections

We will fit a linear model to th
data using only a e

A E Id 1 d of p IAI variables

For
any ERᵈ we use

y jet
to denote its Al dimensional subsector
of entries from A Also denote

I I l I x ̅ IE R
111

For A C Id its complement is
denoted by A d It



The regression coefficients End are
fitted with

Solution for the
t least squaresproblem

a Y

BE

Be g
for βA
β forced to

A all zeros

T denotes the Moore Penrose inverse

Definition Moore Penrose inverse

For M EIR a Moore Penrose or
ssendo inverse is defined as the matrix
Mt E R satisfying all the threecriteria



1 MMT need not be the identitymatrix but
it maps all the column vectors of M to
themselves

M MMT M

2 Mtacts like a weak inverse

MitM MT Mit

3 MM't and MTM are symmetric

Mmt Mint MTM MTM

note that MMT and MTM are orthogonal

Trojection operators as follows from

Mmt Mint MTM MTM



Test risk generalization error

Once the estimator ERᵈ is

computed its quality over a new

sample pair
Inew ynew

same distribution
that generated
the training

can be measured by
data

l x ̅ y
predictionens

Conditional mean prediction risk

E X JiB E.gg gIl inew ynewi
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The tesk risk is then defined
by p

RCP Ex ECHI
to

expectation of conditional
prediction error over the
data distribution

a k a population risk

Theorems
Assume I N I 8 Id P E1O 1

independent of x ̅ and y PTI YE for
some β Rd and y 70 Pick any

p E 0 d and A E Id with IA p
1

For the squared loss

e i g B y Tx ̅

with Katy and Ba 8 the test



risk RIB of β for a given A is

β
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20rdl
fA be a uniformly random subset

of d of cardinality p In the settin
of the theorem above we have C
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Proof of the corollary
Fetisa uniformly randomsubsetof Id of cardinality p

EA 18AM 18112
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Plugging into Theorem 1 completes
the proof
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a The risk first increases with p up tothe interpolation threshold pin
after Idecreaewithp
b If

1ft
the smallest tesk risk is achieved at p dIt is smaller than any p re doubt
descent

interpolation threshold
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Proof of the theorem

Let us consider the conditional
mean squared risk
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a Case p R Breiman Freedman 1983

From the least squares solution
on A we have see exercises

I

βa XIA Xiy
Note that

rank Xi Xa min n p p
Fishart matrix with n degrees of freedom
and covariance matrix Ip

for p n it is full rank with
high probability

Let J J Xif and writewt
observe that this is a vector
in A I Xapa ticketyÉ Xifa



Ba Ba Pa XIXa XIG XII
Be XIX XEXABA

CXEIIXi.TT

XII Xi

Now the square of the lz norm

1Pa PII 11 KTXA XIJ IT
CAIXA XIJ

T
XIXD XII

IT XI X T XIXA XID
TTXi Xi Xa XII



Let Sa be the unique positive de
finite square root of X Xa and define

It XA Sit RAP

Then It is orthonormal

SATCH Si SI41451

I'm
SEE

Trace trick
For a matrix AE RFP and a vector

w̅ ERd the quantity w̅ A is a real
number and can be thought as a 1 1matrix

Using the cyclic property of trace

ÑAñ To IT Aw̅ To ññTA To AÑÑT



Then

11BA FAK ITIs Sa Si SIET I
IT Is 5 IATJ trakick

ET XIX.TT
To ET XIXi
To XI X 8

where
i TY RP

Observe that

E It J BI II KPI YE

Eye E to



and

BET I PatyE XIPA.METIa

Iat XeBE yE pIXaItyET
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y EPI'XÉ IE E
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TIand III p
Observe that

β Xp
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In theβ tape

IE XP BTea

Pi EE.dz lf1isaa

Thus since

I
E

Bae XaBat 118 11 II

we have for w̅

E
E

E BET 11Ball y II

Thus since IT Is II we can



write

Ex
g e
IlBa Ball Ex IlBa Ball

To E XIX.IE EIEE

11Pa It 4 Tr Ext XEXD II

Observe that 112 P is a

matrix with n independent columns
sampled from N x ̅ 18 Hp Then

Xa Wishart matrix

IE XIXi n II

E XIAK E It It
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Book Potters and Bouchaud

A first course in Random

MatrixTheory

The matrix Xa on the other
hand is an inverse Wishart matrix
which follows a inverse Wishartdistributionwith scale matrix II

p
and

n degrees of freedom Fescue
matrix is theidentity

the distribution is
diagonal elementswell defined for n p 1
ofGini follow an

inverse distributio

int Ñn
p I



The firstmoment of a inverse
Wishart distribution with scale matrix
Ip and n degrees of freedom is
known to be

E XII atf

which is well definedonly for n p 1

Plugging this result in theexpressionwe had before

Ra B 11Pa 4 1

T.pt
if p n



Inverse Wishart dritriation

For a positive definite M ERP
the PDF of the inverse Wishart is

Fm Mi s n

detm.fm e
ttksm

with SERPP positive definite being
the scale matrix with by definition
Sge 0 Ff l 1 p The number
n pit is called the degrees of
freedom The function T.pl is the
multivariate gamma function

The first moment is

Eatin Fm insp l



b Case p n

Remembering that Be Xity
and writing the Moore Penrose in
verse as

X XI t

Property of the Moore Penrose
inversewhen XaXI and XIXa
are symmetric

and defining

D J XaPA

we write

PI Pa Xi j
XI XaXI T J XABA

Ba XI XAXIST A BA



XI X XI
T Y

Ip X XaXII Xi Ga
Xi Xa XI T J
EE II tittaEII

where we have defined the projection
matrix onto the row space of Xa

IE.EE
EHI

Ip Pa Pa orthogonal
projection of βA
onto the kernel
null space ofXi E I a



Xi X XI Ty vector on the
row space of

These two vectors are then
orthogonal

11Pa Ball

N.lt
ItttIaxlIFirsttermIKIIp

PE Ball

PI Ip PI Ip PE Pa
PIPI PI PI BIRIBATPIRIR.PE
0



Observe that

PE XICXAXEIXAT.XICXICXAXI.IT

XI XaXII Xa XI XaXII XA

It
Also note that

XI ELE't XAXATCXAXI.IT XAXA

mxn full rank matrix with
highprobability as is full
now rank with high probability hasalmost
n linearly independent rows with

AXATXiXi In high
probability

XI Xa XI T X



Then we have

FIBA ZBIRII.BA BIRII.BAIiii

KIP Ball
11Ball 11 12112

By rotation symmetry of thestandardnormal distribution we have

Ex I'll 7Ball a
11 112

at the endP
there is a remark on this



Egg Il Ip β I
11PM 1

Fp

Second term

HE XAXAIT.FI
Tr XATXAK.IM TXaTXaXITJ
To IT XATXAXEYTXICXAX.TT I
To XAXIYTXAXATCXAXI.IT Jj
To XAX.TT XaT XaXiTJJt

almost surely II because

at



XiXIE R Mp is almost

surely invertible
with highprobability

To XaXI JIT

Remember that

D J XPA
in

II Be YE

s a vector in A

J XaBa YE E R

Then since XaBa and XiβatyE
are uncorrelated we have



E IX.at Xa Xi t.FI
To E XaXII Eng 551

To KI.it E5IeIE

Mote that
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IBackXa It y FEET

YEBE Xai of EET

IE
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Let us now define

CIVIL
Observe that Xa 112 P is a

matrix with n independent columns
sampled from N x ̅ 18 Hp Then

XI Wishart matrix

IE IXXI PII

E taxi EIX.at

So P Spyy

Book Potters and Bouchaud
A first course in Random

MatrixTheory
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Inverse Wishart dritriation

For a positive definite MER
the PDF of the inverse Wishart is

Fm Mis p
j
PtnDké

Tr SM

detin

with SER positive definite being
the scale matrix with by definition
Sge 0 Ff l 1 in The number

p nil is called the degrees of
freedom The function T C is the
multivariate gamma function

The first moment is

Eatin If i pro l



The matrix IIa on the other
hand is an inverse Wishart matrix
which follows a inverse Wishartdistributionwith scale matrix II and
p degrees of freedom Fescue

matrix is theidentity
the distribution is

diagonal elementswell defined for p rotl of It follow an

inverse distribution

int ftp.ntl

The firstmoment of a inverse
Wishart distribution with scale matrix
In and p degrees of freedom is
known to be

Exit a pII

which is well definedonly for p not 1

I



g 1
For p rotl an extrapolation

of the result above makes the first
moment infinite which can be
interpreted as the PDF going tozero as one can write e

Tk

in terms of the first moment
The case p n can also be

interpreted as the expectation goingto infinite in order to send the
PDF to zero

It is also consistent
with Breimon Freedmon 1983

Therefore for p nil

Ex lXÉ xax.IT 11

To 6118.11494 In
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Summing the first term with
the second term we finallyobtain
1 A

B
0 if n l p n l

far 1 g
1 1 9 ftp
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Remark on

T.pk Ball 11Ball

Observe that

118Pa It RPA
T
RBA

PIRI Pa PI B
BE I To βI βI
Tr PBI

I 1 Ball

To PIP IE ERA
The matrix can be viewed as

as projection matrix that projects vectors



in IRP onto the column space of
Given that the rows of are

lid N E Op Ip none of the pdirectionsshould be proffered Then its
reasonable to expect

isotropic
Eye Pa Ip notational

symmet

Since is a projection matrix
of rank n with high probability
its trace the sum of its eigenvalues
which are either 0 or 1 remember that

should be n with high
probability Then its reasonable
to expect

Tr E E w

Thus assuming that II
must be isotropic and proportional to



Ip the scale factor that ensures
Tr IE IRA n is w p Then

Ex I Ip
p

The projection essentiallydistributesthe effect of the n dimensions

uniformlyon average across the pcomponents
Finally

I Rafik Tr PIPE IE ERA

Tr PIPE IT
Trt BE

P
a Big

up
Ball

p


