$\frac{\text { Linear negression with random projections }}{(\text { Gnumian }}$ (Gaussian weak features model) Belkin, Usu, Xu (2019) arXiov: 1903.07571
Bneiman, Freedman (1983) JASA vol 78, 361 Lafon, Thomas (2021) audio: 2403.10459

Consider a data set $S=\left\{\left(\vec{x}^{k}, y^{k}\right)\right\}_{k=1}^{n}$ with each pair $\left(\vec{x}^{k}, y^{k}\right) \in \mathbb{R}^{d+1}$ sampled ${ }^{d}$ i.i.d from a distribution $D(\vec{x}, y)$. Assume

$$
D(\vec{x})=\mathcal{N}\left(\vec{x} \mid \vec{O}, \mathbb{I}_{D}\right)
$$

$D(y \mid \vec{x})$: modeled by the linear function

$$
\begin{aligned}
& y=\vec{\beta}^{\top} \vec{x}+\mu \epsilon ; \quad \in \sim \mathcal{N}(\epsilon \mid 0,1) \\
& \text { "ground-tonuth vector": } \vec{\beta}^{\mu} \in \mathbb{R}^{d}
\end{aligned}
$$

Let:

$$
\begin{aligned}
& x \equiv\left[\vec{x}^{\prime}|\ldots| \vec{x}^{n_{0}}\right]^{\top} \in \mathbb{R}^{n_{2} d} \\
& \vec{y} \equiv\left[y^{\prime} y^{2} \ldots y^{n}\right]^{\top} \in \mathbb{R}^{n^{n}}
\end{aligned}
$$

Least-squares estimation
In usual least-squares estimation, one searches a minimize n $\hat{A}^{\hat{\beta}} \in \mathbb{R}^{d}$ for the empinal loss quadratic loss:

$$
\begin{aligned}
& \hat{\vec{\beta}}=\arg _{\vec{\beta} \in \mathbb{R}^{d}} \operatorname{L}_{s}(s ; \vec{\beta}) \\
& =\underset{\beta=\mathbb{R}^{d}}{\left.\arg \min _{\vec{\beta}} \sum_{k=1}^{n}\left(y^{k}-\vec{\beta}^{\top} \vec{x}^{k}\right)^{2}\right)} \\
& \begin{array}{c}
\text { squared loss } \\
\text { functions }
\end{array} \\
& =\operatorname{argmin}_{\vec{\beta} \in \mathbb{R}^{d}}(\vec{y}-X \vec{\beta})^{\top}(\vec{y}-X \vec{\beta}) \\
& =\underset{\underset{\beta}{\arg } \min ^{d}}{ }\|\vec{y}-X \vec{\beta}\|^{2}
\end{aligned}
$$

In the exercises we also discuss a particular kind of regularized least squares.

Linear negnession with (random) projections
We will fit a linear model to the data using only a subset:
$A \subseteq[d] \equiv\{1, \ldots, d\}$ of $p \equiv|A|$ variables
For any $\vec{v} \in \mathbb{R}^{d}$ we use

$$
\vec{v}_{A} \equiv\left[v_{f}: f \in A\right]^{\top}
$$

to denote its $|A|$-dimensional subrector of entries from A. Also denote

$$
\vec{X}_{A} \equiv\left[\vec{x}_{A}^{\prime}|\ldots| \vec{x}_{A}^{n}\right]^{\top} \in \mathbb{R}^{n_{0} \times|A|}
$$

For $A \underset{c}{c}[d]$ its complement is denoted by $A^{c} \equiv[d]^{\prime} \backslash A$.

The regression coefficients $\frac{\hat{\rightharpoonup}}{\beta} \in \mathbb{R}^{d}$ are
with fitted with

- Solution for the least-squares problem
$X_{A}^{\top} X_{A} \vec{\beta}_{A}=X_{A}^{\top} \vec{y}$
for $\vec{\beta}_{A}$
- $\vec{\beta}_{A}^{c}$ forced to all-zenes
T : denotes the moore-Pennose inverse

Definition: Moone-Pennose inverse
For $M \in \mathbb{R}^{1 \times 2}$, a meose-Pensose or pseudo inverse is defined as the matrix $M^{\dagger} \in \mathbb{R}^{s \times n}$ satisfying all the three crime ria:

1) $M M^{\dagger}$ need not be the identity matrix, but it maps all the column vectors of M to themselves:

$$
M M M^{\dagger}=M
$$

2) M^{\dagger} acts like a weak inverse:

$$
M^{\dagger} M M^{\dagger}=M{ }^{\dagger}
$$

3) $M M^{\dagger}$ and $M^{\dagger} M$ are symmetric:

$$
\left(M M^{\dagger}\right)^{\top}=M M^{\dagger} ;\left(M^{\dagger} M\right)^{\top}=M^{\dagger} M
$$

Vote that $M M^{\dagger}$ and $M^{\dagger} M$ are orthogonal projection operators, as follows from

$$
(M M)^{2}=M M^{\dagger} ;\left(M^{\dagger} M\right)^{2}=M^{\dagger} M
$$

Test risk / generalization enow
Once the estimator $\hat{\vec{\beta}} \in \mathbb{R}^{d}$ is computed its quality oren a new sample pair:

$$
\left(\vec{x}^{\text {new }}, y^{\text {new }}\right) \sim(1)<5 \text { same ditatabition }
$$

can be measured by: the training

$$
l\left(\vec{x}^{\text {nee }}, y^{\text {non }} ; \hat{\beta}\right)
$$

Conditional mean prediction risk

$$
\varepsilon(x, \vec{y} ; \hat{\vec{\beta}}) \equiv \mathbb{E}_{\vec{x}^{n o w}, y^{\infty}| |, \vec{y}}\left[l\left(\vec{x}^{\text {now }}, y^{\text {new }} ; \hat{\vec{\beta}}\right)\right]
$$

The test risk is then defined
$b y_{i}$

$$
R(\vec{\beta}) \equiv \mathbb{E}_{X, \vec{y}}[\varepsilon(X, \vec{y}, \hat{\vec{\beta}})]
$$

\rightarrow expectation of conditional prediction ennor over the
data distribution a.k.a. population risk

Theorem
Assume $\vec{x} \sim P\left(\vec{x} \mid \overrightarrow{0}, \mathbb{I}_{d}\right) ; \in \sim P(\in \mid 0,1)$ independent of \vec{x} and $y=\vec{\beta} \overrightarrow{\vec{P}} \vec{x}^{i}+\mu \epsilon$ for some $\vec{\beta} \in \mathbb{R}^{d}$ and $y>0$ Pick any $p \in\{0, \ldots, d\}$ and $A \subseteq[d]$ with $|A|=p$.

For the squared loss:

$$
l(\vec{x}, y ; \hat{\vec{\beta}})=\left(y-\hat{\vec{\beta}}^{\top} \vec{x}\right)^{2}
$$

with $\vec{\beta}_{A}=X_{A}^{\dagger} \vec{y}$ and $\vec{\beta}_{A_{c}}=\overrightarrow{0}$, the test
risk $R_{A}(\vec{\beta})$ of $\vec{\beta}$ for a given A is:

$$
\begin{aligned}
& R_{A}(\vec{p})= \\
& \left\{\begin{array}{l}
\left.\left\|\vec{\beta}_{A^{c}}\right\|^{2}+\mu^{2}\right)\left(1+\frac{p}{n-p-1}\right) ; \text { if } p \leqslant n-z \\
+\infty \text { i if } n-1 \leqslant p \leqslant n+1 \\
\left\|\vec{\beta}_{A}\right\|^{2}\left(1-\frac{n}{p}\right)+\left(\left\|\vec{\beta}_{a^{\prime}}\right\|^{2}+y^{2}\right)\left(1+\frac{n}{p-n-1}\right) ; \\
\quad \text { if } p \geqslant n+2
\end{array}\right.
\end{aligned}
$$

Corollary
Lett A be a uniformly sondom subset of $[d]$ of cardinality P. In the setting of the theorem above, we hove:

$$
R(\vec{\beta}) \equiv \mathbb{E}_{A}\left[\mathbb{R}_{A}(\vec{\beta})\right]=
$$

$$
\left\{\begin{array}{c}
\left(\left(1-\frac{p}{d}\right)\|\vec{\beta}\|^{2}+y^{2}\right)\left(1+\frac{p}{n-p-1}\right) ; \\
\text { if } p \leqslant n-z \\
\|\vec{\beta}\|^{2}\left[1-\frac{n}{d}\left(z-\frac{d-n-1}{p-n-1}\right)\right] \\
+y^{2}\left(1+\frac{n}{p-n-1}\right) ; \text { if } p \geqslant n+z
\end{array}\right.
$$

Proof of the corollary
Since A is a uniformly nondom sub set of $[d]$ of cardinality P

$$
\begin{aligned}
& \mathbb{E}_{A}\left[\left\|\vec{\beta}_{A}\right\|^{2}\right]=\frac{p}{d}\|\vec{\beta}\|^{2} \\
& \left.\mathbb{E}_{A^{[} L}\left\|\vec{\beta}_{A A^{2}}\right\|^{2}\right]=\left(1-\frac{p}{d}\right)\|\vec{\rho}\|^{2}
\end{aligned}
$$

Plugging into Theorem I completes. the proof.

Sketching the plot for the corollary
Assume $d>n+1$:
a) The risk first increases with p up to the "interpolation threshold," $p=n$, after which decreases with p.
b) If

$$
\frac{\|\stackrel{\rightharpoonup}{\beta}\|^{2}}{\mu^{2}}>\frac{d}{d-n-1},
$$

the smallest task risk is achired at $p=d$ It is smaller tho any $p \leqslant 12$: double descent
, interaneation thenestold

Proof of the theorem
Let us consider the conditional mon squared risk:

$$
\begin{aligned}
& =\mathbb{E}_{\vec{x}^{\infty}, y^{n o \omega}}\left[\left(\left(\vec{\beta}-\hat{\beta}^{\prime}\right)^{\top} \vec{x}^{\text {mow }}+\mu \epsilon^{n \omega \omega}\right)^{2}\right]= \\
& =\left(\vec{\beta}-\frac{\vec{\beta}}{}\right)^{\top} \mathbb{E}_{\vec{x}^{\text {now }}}\left[\vec{x}^{\text {mos }} \vec{x}^{\text {mu }}\right] ~(\vec{\beta}-\hat{\vec{\beta}})
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j \in A}\left(\beta_{j}-\hat{\beta}_{j}\right)^{2}+\sum_{l \in A^{2}}\left(\beta_{e}-\hat{\beta}_{e}\right)^{2}+\mu^{2}
\end{aligned}
$$

Since $\hat{\vec{\beta}}_{A_{c}}=\overrightarrow{0}$ we bore:

$$
\varepsilon\left(x, \overrightarrow{y_{y}} ; \hat{\vec{\beta}}\right)=\eta^{2}+\left\|\vec{\beta}_{A_{c}}\right\|^{2}+\left\|\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\right\|^{2}
$$

a) Case $p \leqslant r \quad$ Bneiman, Freedman 1983

From the least-squases solution on A we hare (see excencises):

$$
\hat{\vec{\beta}}_{A}=\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \vec{y}
$$

Vote that:

$$
\operatorname{rank}\left(X_{A}^{\top} X_{A}\right) \leqslant \min (r, p)=p
$$

Wishant matrix with n degrees of freedom
and covariance matrix I_{p} \rightarrow for $p \leqslant n$, it is full none with high probability:
Let $\vec{\eta} \equiv \vec{y}-X_{A} \vec{\beta}_{A}$ and write: observe that this is a vection in $A^{C}: \vec{\eta}=X_{A} \vec{\beta}_{A}+X_{A} \vec{\beta}_{A}+Y \vec{\epsilon}-X_{A} \vec{\beta}_{A}$

$$
\begin{aligned}
\vec{\beta}_{A} \stackrel{\rightharpoonup}{\beta}_{A}= & \vec{\beta}_{A}-\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top}\left(\vec{\eta}+X_{A} \vec{\beta}_{A}\right) \\
= & \vec{\beta}_{A}-\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} X_{A} \stackrel{\rightharpoonup}{\beta}_{A} \\
& -\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \stackrel{\rightharpoonup}{\eta} \\
= & -\left(X_{A}^{\top} X_{A}\right)^{-1} X_{t}^{\top} \stackrel{\rightharpoonup}{\eta}
\end{aligned}
$$

Now the square of the l_{2} - norm:

$$
\begin{aligned}
& \left\|\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\right\|^{2}=\left\|\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \vec{\eta}\right\|^{2}= \\
& =\left(\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \vec{\eta}\right)^{\top}\left(\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \vec{\eta}\right) \\
& =\vec{\eta}^{\top} X_{A}\left(\left(X_{A}^{\top} X_{A}\right)^{-1}\right)^{\top}\left(X_{A}^{\top} X_{A}\right)^{-1} X_{A}^{\top} \vec{\eta}= \\
& =\vec{\eta}^{\top} X_{A}\left(X_{A}^{\top} X_{A}\right)^{-2} X_{A}^{\top} \vec{\eta}
\end{aligned}
$$

Let S_{A} be the unique positive definite square root of $X_{A}^{\top} X_{A}$ and define

$$
\Psi_{A}=X_{A} S_{A}^{-1} \in \mathbb{R}^{n \times p}
$$

Then Ψ_{t} is orthonormal:

$$
\begin{aligned}
\underline{X_{A}^{T} X_{A}}=\left(\psi_{A} S_{A}\right)^{\top}\left(\psi_{A} S_{A}\right) & =S_{A}^{T} \underbrace{\psi_{A}^{\top} \psi_{A} S_{A}}_{A} \\
& =\mathbb{I}_{P / /} \\
& =S_{A}^{2}
\end{aligned}
$$

Trace trick
For a matrix $A \in \mathbb{R}^{p P P}$ and a vector $\vec{u} \in \mathbb{R}^{d}$, the quantity $\vec{u}^{\top} A \vec{u}$ is a seal number and con be thought as a $|x|$ manioc. using the cyclic property of trace:

$$
\vec{u}^{\top} A \vec{u}=T_{n},\left\{\vec{u}^{\top} A \vec{u}, T_{n}\left\{\overrightarrow{u_{u}} \vec{u}^{\top} A\right\}=T_{0}\left\{A \vec{u} \vec{\mu}^{\top}\right\}\right.
$$

Ther :

$$
\begin{aligned}
& \left\|\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\right\|^{2}=\vec{\eta}^{\top} \Psi_{A} S_{A} S_{A}^{-4} S_{A}^{\top} \Psi_{t}^{\top} \vec{\eta} \\
& =\vec{\eta}^{\top} \Psi_{A} \underline{S_{A}^{-2}} \underline{\Psi_{A}^{\top} \vec{\eta}}= \\
& =\vec{v}^{\top}\left(X_{t}^{\top} X_{t}\right)^{-1} \underline{\underline{v}} \\
& =\operatorname{Tr}\left\{\vec{v}^{\top}\left(X_{t}^{\top} X_{t}\right)^{-1} \vec{v}\right\}= \\
& =\operatorname{Tr}\left\{\left(X_{t}^{\top} X_{t}\right)^{-1} \vec{v} \vec{v}^{\top}\right\}
\end{aligned}
$$

whene

$$
\vec{v} \equiv \Psi_{A}^{\top} \vec{\eta} \in \mathbb{R}^{p}
$$

Obsenve that:

$$
\begin{aligned}
& \vec{v}=\Psi_{A}^{T}\left(\vec{y}-X \vec{\beta}_{A}\right)=\Psi_{A}^{\top}\left(X_{A^{c}} \vec{\beta}_{A^{c}}+\mu \vec{\epsilon}\right) \\
& \Rightarrow \mathbb{E}_{X_{A^{\prime}}, \vec{\epsilon}}[\vec{v}]=\overrightarrow{0}
\end{aligned}
$$

ad:

$$
\begin{aligned}
& \vec{v} \vec{v}^{\top}=\Psi_{A}^{\top}\left(X_{A^{c}} \vec{\beta}_{A^{c}}+\mu \vec{\epsilon}\right)\left(X_{A^{\prime}} \cdot \vec{\beta}_{A^{c}}+\eta \vec{\epsilon}\right)^{\top} \Psi_{A}= \\
& =\Psi_{A}^{\top}\left(X_{A c} \vec{\beta}_{A^{c}}+\mu \vec{\epsilon}\right)\left(\vec{\beta}_{A^{c}}^{\top} X_{A^{c}}^{\top}+\mu \vec{\epsilon}^{\top}\right) \Psi_{A}= \\
& =\Psi_{A}^{\top}\left(X_{A^{c}} \vec{\beta}_{A^{c}} \vec{\beta}_{A c}^{\top} X_{A^{c}}^{\top}+\mu X_{A^{c}} \vec{\beta}_{A} \vec{\epsilon}^{\top}\right. \\
& \left.+\mu \vec{\epsilon} \vec{\beta}_{A^{c}}^{\top} X_{A^{c}}^{\top}+\mu^{2} \vec{\epsilon} \vec{\epsilon}^{\top}\right) \Psi_{A} \\
& \Rightarrow \\
& \mathbb{E}_{X_{A^{\prime}, \vec{y}}, \vec{\epsilon}} \vec{\epsilon}\left[\vec{v} \vec{v}^{+}\right]= \\
& =\Psi_{A}^{\top} \mathbb{E}_{X_{A^{c}}}\left[X_{A^{c}} \vec{\beta}_{A^{c}}\left(X_{A^{c}} \vec{\beta}_{A^{c}}\right)^{\top}\right] \Psi_{A} \\
& +\mathbb{E}_{X_{A^{c}}}[\Psi_{A}^{\top} \underbrace{}_{\vec{\epsilon}}\left[\vec{\epsilon}^{\top} \vec{\epsilon}^{\top}\right] \Psi_{A}]
\end{aligned}
$$

Observe that:

$$
\left(x \vec{\beta}(x \vec{\beta})^{\top}\right)_{k k^{\prime}}=(X \vec{\beta})_{h}(X \beta)_{k^{\prime}}
$$

$$
\begin{aligned}
& =\sum_{l=1}^{p} x_{k l} \beta_{l} \sum_{l^{\prime}=1}^{p} x_{k l^{\prime}} \beta_{l}^{\prime} \Rightarrow \\
& \mathbb{E}\left[\left(x \vec{\beta}(x \vec{\beta})^{\top}\right)_{k l^{\prime}}\right]= \\
& =\sum_{l=1}^{p} \beta_{l} \underbrace{\mathbb{E}\left[x_{k k^{\prime}} x_{k l^{\prime}}\right]}_{\delta_{k l^{\prime}}^{2}}=\|\vec{\beta}\|^{2} \delta_{k l k}^{\prime}
\end{aligned}
$$

Thus, since

$$
\mathbb{E}_{X_{A^{\prime}} \cdot \in}\left[X_{A^{c}} \vec{\beta}_{a^{c}}\left(X_{A^{c}} \cdot \stackrel{\beta}{A}_{A}\right)^{\top}\right]=\left\|\vec{\beta}_{A^{c}}\right\|^{2} \mathbb{I}_{b}
$$

we have for \vec{v} :

$$
\begin{aligned}
& \mathbb{E}_{X_{x_{i}}, \vec{E}}[\vec{v}]=\overrightarrow{0} \\
& \left.\mathbb{E}_{x_{f^{\prime}}, \in}, \vec{v} \vec{v} \vec{v}^{T}\right]=\left(\left\|\vec{\beta}_{A^{e}}\right\|^{2}+y^{2}\right) \mathbb{I}_{p}
\end{aligned}
$$

Thus, since $\Psi_{A}^{\top} \Psi_{A}=\mathbb{I}_{P}$ we con
write:

$$
\begin{aligned}
& \left.\mathbb{E}_{X, \vec{y}, \vec{\epsilon}, \vec{\epsilon}}\left[\left\|\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\right\|^{2}\right]=\mathbb{E}_{X_{A}, x_{A},}, \dot{\epsilon}^{\prime}\right]\left[\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\| \|^{2}\right] \\
& =\operatorname{Tr}\left\{\mathbb{E}_{X_{A}}\left[\left(X_{A}^{\top} X_{A}\right)^{-1}\right] \mathbb{E}_{X_{A t} \dot{t}^{\prime}}\left[\stackrel{\rightharpoonup}{v} \vec{v}^{\top}\right]\right\} \\
& =\left(\left\|\vec{\beta}_{A^{c}}\right\|^{2}+\mu^{2}\right) \operatorname{Tr}\left\{\mathbb{E}_{X_{A}}\left[\left(X_{A}^{\top} X_{A}\right)^{-1} \mathbb{I}_{P}\right\}\right.
\end{aligned}
$$

Observe that $X_{A} \in \mathbb{R}^{n \times p}$ is a matrix zoith r independent columns sampled from $N^{P}\left(\vec{x}_{A} \mid \vec{O}_{;} \mathbb{1}_{p}\right)$. Then
$X_{A}^{\top} X_{A}$: Wish bart matrix

\[

\]

$$
=\sum_{l=1}^{n} S_{j k}=n S_{j k / l}
$$

Book: Potters and Bouchaud
A first course in Random Matrix Theory

The matrix $\left(X_{A}^{\top} X_{A}\right)^{-1}$ on the other hond, is an inverse - Wishant matrix, which follows a inverse- Wishant distri' betion with scale matrix \mathbb{I}_{p} and n degrees of freedom.
\rightarrow the distribution is well-defined for $n>p+1$
*When the scale matrix is the idenituyy diogsonal elements of $\left(x_{a}^{x} x_{0}\right)^{-1}$ follow an inverse γ^{2} distribibution

$$
: \operatorname{in} 20 \gamma-T_{n-p+1}^{2}
$$

The first moment of a inverseWishart distribution with scale matrix \mathbb{I}_{p} and n degrees of freedon is known to be

$$
\mathbb{E}_{X_{A}}\left[\left(X_{A}^{\top} X_{A}\right)^{-1}\right]=\frac{\mathbb{I}_{p}}{n-p-1}
$$

which is well-defined only for $r>p+1$
Plugging this nesult in the express sion we had before

$$
\begin{array}{r}
R_{A}(\vec{\beta})=\left(\left\|\vec{\beta}_{A_{c}}\right\|^{2}+\mu^{2}\right)\left(1+\frac{p}{n-p-1}\right) \\
\text { if } p \leqslant n-z
\end{array}
$$

Inverse - Discant dristribution
For a positive r definite $M \in \mathbb{R}^{p \times p}$ the PDF of the inverse wishart is

$$
\begin{aligned}
& f_{M}(M ; S, \eta)= \\
& \frac{(\operatorname{det} S)^{n / 2}}{2^{p n / 2} T_{p}\left(\frac{n}{2}\right)}(\operatorname{det} M)^{-(p+n+1) / 2} e^{-\frac{1}{2} \ln \left\{S M^{-1}\right\}}
\end{aligned}
$$

with $S \in \mathbb{R}^{p \times p}$ position definite being the scale matrix with, by definition $S_{j l} \geqslant 0, \forall g_{1} b=1,0, p, p_{1}^{\prime}$, he number $n^{j e}>p+1$ is called the degrees of freedom, The function $T_{p}(\cdot)$ is the multivariate soma function.

The first moment is

$$
\mathbb{E}_{M}[M]=\frac{s}{n-p-1} ; n>p-1
$$

b) Case $p \geqslant n$

Remembering that $\hat{\bar{S}}_{A}^{A}=X_{A}^{\dagger} \frac{\vec{y}}{}$ and writing the moore. Pennate inverse as

$$
X_{A}^{\dagger}=X_{A}^{\top}\left(X_{A} X_{t}^{\top}\right)^{\dagger}
$$

Property of the floe Ponce

and defining:

$$
\vec{\eta} \equiv \vec{y}-X_{A} \vec{\beta}_{A}
$$

we write:

$$
\begin{aligned}
\vec{\beta}_{A}-\vec{\beta}_{A} & =\vec{\beta}_{A}-X_{A}^{\dagger} \vec{y}= \\
& =\vec{\beta}_{A}-X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)\left(\vec{\eta}+X_{A} \vec{\beta}_{A}\right) \\
& =\vec{\beta}_{A}-X_{A}^{\top}\left(X_{A}^{\top} X_{A}^{\top}\right) X_{A} \vec{\beta}_{A}
\end{aligned}
$$

$$
\begin{aligned}
& -X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\dagger} \vec{\eta} \\
= & \left(\mathbb{I}_{P}-X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \top X_{A}\right) \vec{\beta}_{A} \\
& -X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \dagger \vec{\eta} \\
= & \left(\mathbb{I}_{P}-P_{A_{A}}\right) \vec{\beta}_{A}-X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \top \vec{\eta}
\end{aligned}
$$

whene we hove defined the projection matrix onto the sow space of X_{t} :

$$
\begin{aligned}
& P_{X_{A}} \equiv X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \dagger X_{A} \\
& \Rightarrow\left(I_{p}-P_{x_{A}}\right) \vec{\beta}_{A} \text { : orthogonal } \vec{B} \\
& \text { optojection of } \vec{\beta}_{1} \\
& \text { onto the (kernel) } \\
& \underline{\underline{X_{t}^{\top}}\left(X_{A} X_{A}^{\top}\right)^{\dagger} \vec{\eta}} \\
& \text { null space of }
\end{aligned}
$$

$\Rightarrow X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\dagger} \vec{\eta}:$ evection on the now space of x_{A}
These two vectors are then orthogonal:

$$
\begin{aligned}
& \left\|\vec{\beta}_{A}-\hat{\vec{\beta}}_{A}\right\|^{2}= \\
& =\left\|\left(\mathbb{I}_{P}-P_{\overrightarrow{X_{A}}}\right) \vec{\beta}_{A}\right\|^{2}+\left\|X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\dagger} \vec{\eta}\right\|^{2}
\end{aligned}
$$

First term

$$
\begin{aligned}
& \left\|\left(\mathbb{I}_{A}-P_{\vec{x}_{A}}\right) \vec{\beta}_{A}\right\|^{2} \\
= & \vec{\beta}_{A}^{\top}\left(\mathbb{I}_{P}-P_{\vec{x}}^{\top}\right)\left(\mathbb{I}_{P}-P_{\vec{x}}\right) \vec{\beta}_{A}= \\
= & \vec{\beta}_{A}^{\top} \vec{\beta}_{A}-\vec{\beta}_{A}^{\top} P_{x_{A}} \vec{\beta}_{A} \vec{\beta}_{A}^{\top} P_{A}^{\top} \vec{\beta}_{A}+\vec{\beta}_{A}^{\top} P_{A}^{\top} P_{x_{A}} \vec{\beta}_{A}
\end{aligned}
$$

Obsenre that:

$$
\begin{aligned}
P_{X_{A}}^{\top} & =\left(X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\top} X_{A}\right)^{\top}=X_{A}^{\top}\left(X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\dagger}\right)^{\top}= \\
& =X_{A}^{\top}\left(\left(X_{A} X_{A}^{\top}\right)\right)^{\top} X_{A}=X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\top} X_{A} \\
& =P_{X_{A}}
\end{aligned}
$$

Also note that:

$$
P_{X_{A}}^{2}=X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\top} X_{A} X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \dagger X_{A}
$$

$n \times n$ fall sank matrix e with high probability, as \vec{X}_{B} is full now lank with high probability: has "dent n linearly independent norris (with $\left.\Rightarrow\left(X_{A} X_{A}^{\top}\right) T X_{A} X_{A}^{\top} \approx \mathbb{I}_{n} \quad \begin{array}{l}\text { high } \\ \text { pisabaillity }\end{array}\right)$

$$
=X_{t}^{\top}\left(X_{t} X_{t}^{\top}\right)^{\top} X_{t}=P_{X_{A}}
$$

Then we hove:

$$
\begin{aligned}
& \left\|\left(\mathbb{I}_{P}-P_{x_{A}}\right) \vec{\beta}_{A}\right\|^{2}= \\
& =\vec{\rho}_{A}^{\top} \vec{\beta}_{A}-Z \vec{\beta}_{A}^{\top} P_{x_{A}}^{\top} P_{x_{A}} \vec{\beta}_{A}+\vec{\beta}_{A}^{\top} P_{X_{A}}^{\top} P_{X_{A}} \vec{\beta}_{A} \\
& =\vec{\beta}_{A}^{\top} \vec{\beta}_{A}-\left(P_{X_{A}} \vec{\beta}_{A}\right)^{\top}\left(P_{X_{A}} \vec{\beta}_{A A}\right) \\
& \Rightarrow \\
& \begin{array}{l}
\left\|\left(\mathbb{I}_{P}-P_{X_{A}}\right) \vec{\beta}_{A A}\right\|^{2}= \\
\quad=\left\|\vec{\beta}_{A}\right\|^{2}-\left\|\mathcal{P}_{x_{A}} \vec{\beta}_{A}\right\|^{2}
\end{array}
\end{aligned}
$$

By notation symmetry of the stanard normal distribution we have:

$$
\mathbb{E}_{x_{i, ~}^{a}}\left[\left\|\mathcal{P}_{x_{A}} \vec{\beta}_{A}\right\|^{2}\right]=\frac{n}{P}\left\|\vec{\beta}_{A}\right\|^{2}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \begin{array}{l}
\mathbb{E}_{x_{1} \vec{y}}\left[\left\|\left(\mathbb{I}_{p}-P_{x_{A}}\right) \vec{\beta}_{A}\right\|^{2}\right] \\
\quad=\left\|\vec{\beta}_{A}\right\|^{2}\left(1-\frac{n}{p}\right)
\end{array}
\end{aligned}
$$

Second term

$$
\begin{aligned}
& \left\|x_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\dagger} \vec{\eta}\right\|^{2}= \\
& =\operatorname{Tr}\left\{\left(x_{A}^{\top}\left(x_{A} x_{A}^{\top}\right) \stackrel{\rightharpoonup}{\eta}\right)^{\top} x_{A}^{\top}\left(x_{A} x_{A}^{\top}\right)^{\top} \vec{\eta}\right\}= \\
& =\operatorname{T}_{\Omega}\left\{\vec{\eta}^{\top}\left(X_{A}^{\top}\left(x_{A} x_{A}^{\top}\right)^{\top}\right)^{\top} x_{A}^{\top}\left(X_{A} x_{A}^{\top}\right)^{\top} \stackrel{\rightharpoonup}{\eta}\right\}= \\
& =\operatorname{Tr}\left\{\left(\left(x_{A} x_{A}^{\top}\right)^{\top}\right)^{\top} x_{A} x_{A}^{\top}\left(x_{A} x_{A}^{\top}\right) \mid \vec{\eta} \vec{\eta}^{\top}\right\}= \\
& =\operatorname{Tr}\left\{\left(X_{A} X_{A}^{\top}\right)^{\top} X_{A} X_{A}^{\top}\left(X_{A} X_{A}^{\top}\right)^{\top} \vec{\eta} \vec{\eta}^{\top}\right\}
\end{aligned}
$$

almost surely I_{n} because
$X_{d} X_{d}^{\top} \in \mathbb{R}^{n \times n}(n<p)$ is dement surely imestible (with high probability)

$$
=\operatorname{Tr}\left\{\left(X_{A} X_{A}^{\top}\right) \dagger \vec{\eta}^{\top} \vec{\eta}^{\top}\right\}
$$

Remember that:

$$
\vec{\eta}=\underbrace{X_{A}}_{\underbrace{X_{A} \overrightarrow{\beta_{A}}}_{A}+X_{A^{c}} \underline{\beta}_{A^{c}}+y \vec{\epsilon}}
$$

is a vector in A^{c} :

$$
\vec{\eta}=X_{A^{c}} \vec{\beta}_{A^{c}}+\mu \vec{\epsilon} \in \mathbb{R}^{n}
$$

 ane unconelated we hove

$$
\begin{aligned}
& \mathbb{E}_{x, \vec{g}}\left\{\left\|x_{A}^{\top}\left(x_{A} x_{A}^{\top}\right)^{\top} \vec{\eta}\right\|^{2}\right\}= \\
& =\operatorname{Tr}\left\{\mathbb{E}_{x, y}\left[\left(x_{A} x_{A}^{\top}\right)^{\top}\right] \mathbb{E}_{x, \vec{j}}\left[\vec{\eta} \vec{\eta}^{\top}\right]\right\}= \\
& =\operatorname{Tr}\left\{\mathbb{E}_{x_{A}}\left[\left(x_{A} x_{A}^{\top}\right)^{\top}\right] \mathbb{E}_{X_{A}} \mathbb{E}_{\overrightarrow{6}}[\vec{\eta} \vec{\eta} \top]\right\}
\end{aligned}
$$

Yote that

$$
\begin{aligned}
& \vec{\eta} \vec{\eta}^{\top}=\left(x_{A} \vec{\beta}_{A^{c}}+y \vec{\epsilon}\right)\left(\vec{\beta}_{A^{\circ}}^{\top} X_{A^{C}}^{\top}+y \vec{\epsilon}^{\top}\right) \\
& =\left\|\vec{\beta}_{A^{c}}\right\|^{2} X_{d^{c}} X_{t^{c}}^{\top}+\mu X_{A^{c}} \vec{\beta}_{A^{t}} \vec{\epsilon}^{\top} \\
& +\mu \vec{\epsilon} \overrightarrow{\vec{B}}_{A^{\circ}}^{\top} X_{A^{\circ}}^{\top}+\eta^{2} \vec{\epsilon} \vec{\epsilon}^{\top} \\
& \Rightarrow \underline{\underline{\mathbb{E}_{x, y}} \mathbb{E}_{\vec{\epsilon}}\left[\vec{\eta} \vec{\eta}^{\top}\right]=\left(\left\|\vec{\beta}_{A^{\prime}}\right\|^{2}+\mu^{2}\right) \mathbb{I}_{n}}
\end{aligned}
$$

Let us now define:

$$
I_{A} \equiv\left(X_{A} X_{A}^{\top}\right)^{\top}
$$

Obsenve that $X_{A} \in \mathbb{R}^{n \times P}$ is a matrix zoith r independent columns sampled from $N^{\prime}\left(\vec{x}_{A} \mid \widetilde{O}_{;} \mathbb{1}_{p}\right)$. Then
$X_{A} X_{t}^{\top}$: Wishers matrix

$$
\begin{aligned}
& \Leftrightarrow \mathbb{E}_{X_{A}}\left[X_{A} X_{A}^{\top}\right]=p \mathbb{I}_{r o} \\
\mathbb{E}\left[\left(x_{A} X_{A}^{\top}\right)_{j h}\right] & =\sum_{l=1}^{p /} \mathbb{E}\left[x_{A}^{l l} x_{A}^{k l}\right]= \\
& =\sum_{l=1}^{p} \delta_{j l}=p \delta_{d / l} / l
\end{aligned}
$$

Book: Potters and Bouchaud A first course in Random Matrix Theory

Inverse - Wishant dristribution
For a positive definite $M \in \mathbb{R}^{n \times n}$, the PDF of the inverse wishant is

$$
\begin{aligned}
& f_{M}(M ; S, p)= \\
& \quad \frac{(\operatorname{det} S)^{p / 2}}{Z^{p / 2} T_{n}\left(\frac{p}{2}\right)}(\operatorname{det} M)^{-(p+n+1) / 2} e^{-\frac{1}{2} \ln \left\{S M^{-1}\right\}}
\end{aligned}
$$

with $S \in \mathbb{R}^{\text {nan }}$ position definite being the scale matrix with, by deficitilion $S_{j} \geqslant 0, \forall f, b=1,0, n$, , The number $P^{j^{2}>}>n+1$ is called the degrees of freedom. The function $T_{n}(\cdot)$ is the multivariate soma function. The first moment is

$$
\mathbb{E}_{M}[M]=\frac{s}{p-n-1} ; p>n-1
$$

The matrix c I_{A}, on the other hond, is an inverse. Wishart matnioc, which follows a inverse-Wishant distrait beution with scale matrix \mathbb{I}_{n} and p degrees of freedom.
\rightarrow the distribution is well-defined for $p>n+1$
*When the scale matrix is the identity y, diogsonal elements, of I_{A} follow an inverse x^{2} distribiention

$$
: \operatorname{inv} v-\int_{p-n+1}^{2}
$$

The first moment of a inverseWishart distribution with scale matrix \mathbb{I}_{n} and P degrees of freedon is known to be

$$
\mathbb{E}_{x_{A}}\left[\Pi_{A}\right]=\frac{\mathbb{I}_{R}}{p-n-1}
$$

which is well-defined only for $p>r_{0}+1$.

For $p=n+1$, an extrapolation of the nesult above makes the first moment infinite, which con be interpreted as the PDF going to zeno as one con write $e^{- \text {Tn it.\} ~ }}$ in terms of the first moment.

The case $p=r$ con also be interpreted as the expectation going to infinite in order to send the PDF to zeno.
\rightarrow It is also consistent
with Bneimen, Freedmen (1983)
Therefore for $p>n+1$:

$$
\begin{aligned}
& \mathbb{E}_{x, \vec{a}}\left\{\left\|x_{A}^{\top}\left(X_{A} X_{A}^{\top}\right) \dagger \vec{\eta}\right\|^{2}\right\}^{p}= \\
& \top_{\Omega}\left\{\frac{\mathbb{I}_{n}}{p-n-1}\left(\left\|\vec{\beta}_{A^{c}}\right\|^{2}+\mu^{2}\right) \mathbb{I}_{n}\right\}
\end{aligned}
$$

$$
=\frac{r}{p-r-1}\left(\left\|\vec{\beta}_{A^{c}}\right\|^{2}+\mu^{2}\right)
$$

Summing the first term, with the second term we finally

$$
\begin{aligned}
& R_{A}(\vec{\beta})= \\
& \left\{\begin{array}{l}
+\infty \text { i if } n-1 \leqslant p \leqslant n+1 \\
\left\|\vec{\beta}_{A}\right\|^{2}\left(1-\frac{n_{a}}{p}\right)+\left(\left\|\vec{\beta}_{a_{a}}\right\|^{2}+y^{2}\right)\left(1+\frac{n}{p-n-1}\right) \\
\quad \text { if } p \geqslant n+2
\end{array}\right.
\end{aligned}
$$

Remask oro:

$$
\mathbb{E}_{X_{i, g}}\left[\left\|\mathcal{P}_{X_{A}} \vec{\beta}_{A}\right\|^{2}\right]=\frac{n}{p}\left\|\vec{\beta}_{A}\right\|^{2}
$$

Obsenze that

$$
\begin{aligned}
&\left\|P_{A} \vec{\beta}_{A}\right\|^{2}=\left(P_{A} \vec{\beta}_{A}\right)^{\top}\left(P_{x_{A}} \vec{\beta}_{A}\right)= \\
&=\vec{\beta}_{A}^{\top} P_{A_{A}}^{\top} P_{A} \vec{\beta}_{A}=\vec{\beta}_{A}^{\top} P_{A}^{2} \vec{\beta}_{A}= \\
&=\vec{\beta}_{A}^{\top} P_{A} \vec{\beta}_{A}=\operatorname{Tr}\left\{\vec{\beta}_{A}^{\top} P_{x_{A}} \vec{\beta}_{A}\right\}= \\
&=\operatorname{Tr}\left\{\vec{\beta}_{A} \vec{\beta}_{A}^{\top} P_{A_{A}}\right\} \\
& \Rightarrow \mathbb{E}_{x_{A}}\left[\left\|P_{A} \vec{\beta}_{A}\right\|^{2}\right]= \\
&=\operatorname{Tr}\left\{\vec{\beta}_{A} \vec{\beta}_{A}^{\top} \mathbb{E}_{x_{A}}\left[P_{x_{A}}\right]\right\}
\end{aligned}
$$

The matrixi $P_{x_{A}}$ con be riewued as as progection matrix, that pigects vectors
in \mathbb{R}^{p} onto the column space of X_{A}.
Giver that the nows of X_{b} are lid $N P\left(\vec{x}_{x} \mid \vec{O}_{p}, I_{p}\right)$, none of the p dines liens should be pneffened. Then its reasonable to expect:

$$
\mathbb{E}_{x_{t}}\left[P_{x_{t}}\right] \propto \mathbb{\mathbb { X }}_{p}
$$

Since P_{x} is a projection matrix of sank n. ${ }^{x}$ w with high probabilitirg, its trace '(the sum of its eigenvalues,' which ane either 0 or 1 ; remember th ot $P_{t_{t}}=P_{x_{t}}^{2}$ should be n, with high probability. Then, its' reasonable to expect:

$$
T T_{n}\left\{\mathbb{E}_{X_{t}}\left[P_{x_{t}}\right]\right\}=n
$$

Thus assuming that $\mathbb{E}_{x_{t}}\left[P_{x_{t}}\right]$ must be isotropic and proportional to
$I_{P_{1}}$ the scale factor that ensures $\operatorname{Tr}_{2}^{P}\left\{\mathbb{E}_{x_{A}}\left[P_{x_{A}}\right]\right\}=n$ is n / P. There:

$$
\mathbb{E}_{x_{t}}\left[P_{x_{t}}\right]=\frac{n}{p} \mathbb{I}_{p}
$$

The projection $P_{x_{A}}$ essentially distribū ties the effect of the r dimensions u niformly (on avenge) across the p com ponentes.

Finally:

$$
\begin{aligned}
\mathbb{E}_{X_{A}}\left[\left\|P_{A_{A}} \vec{\beta}_{A}\right\|^{2}\right] & =\operatorname{Tr}\left\{\vec{\beta}_{A} \vec{\beta}_{A}^{\top} \mathbb{E}_{X_{A}}\left[P_{X_{A}}\right]\right\} \\
& =\operatorname{Tr}\left\{\vec{\beta}_{A} \vec{\beta}_{A}^{\top} \mathbb{I}_{P} \frac{n}{p}\right\} \\
& =\frac{n}{P} T_{\Omega}\left\{\vec{\beta}_{A} \vec{\beta}_{A}^{\top}\right\} \\
& =\frac{n}{P} \sum_{j=1}^{p} \beta_{A, i}^{2}=\frac{n}{P}\left\|\vec{\beta}_{A A}\right\|^{2}
\end{aligned}
$$

