Homework 5
CS-526 Learning Theory

Problem 1. VC dimension of union

Let $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{r}$ be hypothesis classes over some fixed domain set \mathcal{X}. Let $d=\max _{i} \operatorname{VCdim}\left(\mathcal{H}_{i}\right)$ and assume that $d>2$.
Prove that:

1. $\operatorname{VCdim}\left(\bigcup_{i=1}^{r} \mathcal{H}_{i}\right) \leq \frac{4 d}{\log (2)} \log \left(\frac{2 d}{\log (2)}\right)+\frac{2 \log (r)}{\log (2)}$.

Hint: Use Sauer's lemma for bounding the growth function and the inequality

$$
\text { "Let } a \geq 1 \text { and } b>0 \text {. If } x \leq a \log (x)+b \text { then } x \leq 4 a \log (2 a)+2 b . "
$$

2. For $r=2$, the bound can be strengthened to $\operatorname{VCdim}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right) \leq 2 d+1$.

Hint: $\sum_{i=0}^{k}\binom{k}{i}=2^{k}$

Problem 2. Least squares and regularized least squares

Consider the linear least squares minimization problem:

$$
\hat{\beta}=\underset{\beta \in \mathbb{R}^{d}}{\arg \min }\|y-X \beta\|^{2},
$$

where $y \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{d}, X \in \mathbb{R}^{n \times d}$.

1. Assuming that n and d are such that the inverse of $X^{T} X$ is well defined, show that:

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

2. Consider now the modified problem

$$
\hat{\beta}_{\lambda}=\underset{\beta \in \mathbb{R}^{d}}{\arg \min }\|y-X \beta\|^{2}+\lambda\|\beta\|^{2},
$$

where $\lambda>0$ is a regularization parameter. Show that

$$
\hat{\beta}_{\lambda}=\left(X^{T} X+\lambda I_{d}\right)^{-1} X^{T} y
$$

and discuss the role of λ in the light of the bias-variance trade-off.

Problem 3. Linear regression with projections

Consider the linear regression model with projections defined in class. Adapt the calculation made in class for the case $p<n-1$ and obtain

$$
\mathcal{R}_{\mathcal{A}}(\beta)=\left(\left\|\beta_{\mathcal{A}^{C}}\right\|^{2}+\mu^{2}\right)\left(1+\frac{p}{n-p-1}\right)
$$

for a given \mathcal{A}, and for \mathcal{A} being a uniformly random subset of $[d]$ of cardinality p :

$$
\mathcal{R}(\beta)=\left(\left(1-\frac{p}{d}\right)\|\beta\|^{2}+\mu^{2}\right)\left(1+\frac{p}{n-p-1}\right)
$$

These expressions correspond to the left side of the double descent curve. (Hint: this computation is done in the lecture notes)

Problem 4. Bias-variance decomposition

Consider the bias-variance-noise decomposition derived in class:

$$
\begin{aligned}
\mathbb{E}_{S} \mathbb{E}_{x, y \mid S}\left[\left(h_{S}(x)-y\right)^{2}\right] & =\underbrace{\mathbb{E}_{x}\left[\left(\mathbb{E}_{S}\left[h_{S}(x)\right]-\bar{h}(x)\right)^{2}\right]}_{\text {Bias }^{2}} \\
& +\underbrace{\mathbb{E}_{S} \mathbb{E}_{x \mid S}\left[\left(h_{S}(x)-\mathbb{E}_{S}\left[h_{S}(x)\right]\right)^{2}\right]}_{\text {Variance }}+\underbrace{\mathbb{E}_{x, y}\left[(\bar{h}(x)-y)^{2}\right]}_{\text {Noise }}
\end{aligned}
$$

where $S=\left\{\left(x^{k}, y^{k}\right)\right\}_{k=1}^{n}$ is the training set with $x^{k} \in \mathbb{R}^{d}, y^{k} \in \mathbb{R}$ for $k=1, \ldots, n,(x, y)$ a new data sample outside S, h_{S} is an estimator, and \bar{h} the optimal estimator.
Consider again the linear regression with projections defined in class.
Starting from the noise decomposition and using results derived in the class derive and plot the noise-bias-variance tradeoff curves as a function of $\alpha=p / n$ in a regime $p, n, d \rightarrow+\infty$ at the same rate. You will set $\phi=n / d$ and distinguish two cases $\phi<1$ and $\phi>1$ (notice that in this model $\alpha<1 / \phi$ so for $\phi>1$ there is no overparametrized regime).

