
Quantum computation : Lecture 6

· Simai's algorithm
· Part I reminder

· Part
I

:. measurement process

· probabilistic analysis
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Short recap of last week :

Simon's problem : find the hidden sub group Mc G

with as few as possible calls to the crade

f : [0, 13"-> X satisfying f(x) = fly) whenever ecoye. H
Here : 6 = [0,13

H = k-dimensional subspace of 6

Recall also :
Ht= Exe &0,13" : xc . h = 0 KheN]



Simon's quantum algorithm
Circuit :
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Last time
,
we computed :

(i)

143)=Z (12 =1
·

lyfi
YEH

+ n-j=12

u -k
Recall 6 is divided info 2 equivalence
classes EEj =Hv4 ! 1 = jx24 - &

v'_ representativ of class Eje

E fi = value off on Ej



Measurement process

* Here
,
the firsta qubits are entangled

with the last n-k qubits in state(43) ,
So the partial measurement of the first
n qubits is more difficult to describe

than in the case of Deutsch-Josta's
algorithm .



In general , a measurement is described
in QM by a complete collection of arthogand

12 :<d3 :fprojectors &PO"+VA -1id
f &

f y I
d
--

·z Pi = #
G

j = 1

↑ Pi = 14:) 24j) , where E14s), 1 < j<d)IX :
-

is anorthonormal basis of the Hilbert space H



Then if the system is in state 14

before the measurement , theautcane

state i

14 =
Pj/4>
1Pj /4 II

with probability
3

"Pil4 = C41P, Pj/4)Dr P
, 14)



In our case
,
the measurement of the

first n qubits is described by the

following complete collection of projectors :

[Py = 1y) < y) In
-k , ye %0,13")

For a given yo -30,13" , let as compute
the outcome probability(43/Py. 143)
of state 43 = 140) * Some state we do

11 Pyn/43 I not care about



< 43 /Py . (43)

Guitay (fi)EG
e

↳is ik
= Syys = Syoy = Si



So the above quadruple seem simplifies to :
H

· o if #H
· and if yot Ht , we obtain :

zuck u-k
2 1zenm (1)

v()g+24. Go
=

2(n-k)
=

2u-
k

-- 2
= 1

i.e
.

the outcome probabilities are uniform overHt.



Simon's algorithm is then the following :

· run n-K times the above circuit

-> outputs y .. glu-k uniformly
and independently distributed on H

+

·If y(t ... ytk) are knearly independent,
then these form a basis of Ht , which is

of dimension n-k .



From this basis
, compute the basis of the

dual space H , via a classical algorithm
(Gauss elimination - runtime O(n)).
In this case

,
declare success.

· If y .. glu-k) are not linearly independent
then declare failure and restart the

algorithm . (NB : In practice, one can do better)



Claim : prob (success) I

Proof : · prob (y 10) = 1- Fr
I 1

· prob (y* SPly(i) /y+ d) = 1 Th =1
-jurk

= E0, y(t))

· prob (y() Sanlyli), y (2) / ym), ylt lik indep = 1--
2uk

↳ elements = 1-1
2n

-k-2



rob(ylt & Span (y() .. y (-k -1)/yt) .. Gluck-ch In indept
= 1- Enter -1- 1

So finally,

prob (success) = Prob (yl... Gli-b) are hi . Indep.)
n-K-1

-To (t-mi) = -Telne= 1
I

2= n -k-j



Furthermore :

prob (success) = exp ( *** In (1-Ee) and

using In (1 -x -(2In2) foro

So prob (success) e (us)
1/2
I > x

< exp(-(2(n2)=M e i
--

2ex(-z(nz)
= 1 i

= 2- = 1 #



Of cause, a success probability of only t
is not satisfactory; we would like a success

Prob . 1-E .
Let us therefore repeat

independently the whole algorithm T times :

P rob (faihme after T attempt
= prob(hume)" (2) "S

if T Ini



Conclusion : We obtain a success prob.-1-E

after O((-K) · /Inel) calls to the quantum
crade Uf ( & a polynomial runtime
daminated by the O(n) computation of the

dual basis). This is to be compared to

the er(24 calls to the cracef of
any classical algorithm.


