Quantum computation: lecture 6

- Simar's algorithm
- Part I reminder
- Part II : : measurement process - probabilistic analysis

Shat recap of last week:
Simon's problem: find the hidden subgrap $H \subset G$ with as few as possible calls to the grade $f:\{0,1\}^{n} \rightarrow x$ satisfying $f(x)=f(y)$ whenever $x \in y \in H$ Here: $G=\{0,1\}^{n}$
$H=k$-dimensional subspace of G
Recall also: $H^{1}=\left\{x \in\left\{0,13^{n}: x \cdot h=0 \quad \forall h \in H\right\}\right.$

Simon's quantum algorithm

Last time, we computed:

$$
\left|\psi_{3}\right\rangle=\sum_{y \in H^{\perp}}\left(\frac{1}{2^{n-k}} \sum_{j=1}^{2^{n-k}}(-1)^{v^{(j)} \cdot h}\right)|y\rangle \otimes\left|f_{j}\right\rangle
$$

Recall G is divided into 2^{n-k} equivalence classes $\left\{E_{j}=H \oplus v(j), 1 \leq j \leq 2^{n-k}\right\}$

$$
\left\{\begin{array}{l}
v^{(j)}=\text { representative of class } E_{j} \\
f_{j}=\text { value of } f \text { on } E_{j}
\end{array}\right.
$$

Measurement process
A. Here, the first n quits are entangled with the last $n-k$ quits in state $\left|\psi_{3}\right\rangle$, so the partial measurement of the first n quits is more difficult to describe than in the case of Deutsch-Josza's algorithm.

In general, a measurement is described in QM by a complete collection of orthogand projectors $\left\{P_{j,} 1 \leq j \leq d\right\}$:

$$
\begin{aligned}
& \cdot \forall_{1 \leq j \leq d,} P_{j}=P_{j}^{+}=P_{j}^{2} \\
& \cdot \sum_{j=1}^{d} P_{j}=I
\end{aligned}
$$

$\left(\begin{array}{rl}\text { Ex: } & P_{j}=\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right| \text {, where }\left\{\left|\varphi_{j}\right\rangle, 1 \leqslant j \leqslant d\right\} \\ & \text { is an orthonormal basis of the Hilbert space } H\end{array}\right)$

Then if the system is in state 14\rangle before the measurement, the act cane state i

$$
\left|\psi^{\prime}\right\rangle=\frac{P_{j}|\psi\rangle}{\| P_{j}|\psi\rangle \|}
$$

with probability

$$
\| P_{j}|\psi\rangle \|^{2}=\langle\psi| P_{j}^{+} P_{j}|\psi\rangle \stackrel{{ }^{\text {prop }}}{=}\langle\psi| P_{j}|\psi\rangle
$$

In our case, the measurement of the first n quits is described by the following complete collection of projectors:

$$
\left\{P_{y}=|y\rangle\langle y| \otimes I_{n-k}, \quad y \in\{0,1\}^{n}\right\}
$$

For a given $y_{0} \in\{0,1\}^{n}$, let us compute the ait came probability $\left\langle\psi_{3}\right| P_{y_{0}}\left|\psi_{3}\right\rangle$ of state $\frac{P_{1}\left(\varphi_{3}\right)}{\left.\| P_{y_{0}} \mid \varphi_{3}\right) \|}=\left|y_{0}\right\rangle \otimes\binom{$ Some state we do }{ not care about }

$$
\begin{aligned}
& \left\langle\psi_{3}\right| P_{y_{0}}\left|\psi_{3}\right\rangle \\
& =\left(\sum_{y \in H^{+}} \frac{1}{2^{n-k}} \sum_{j=1}^{2^{n-k}}(-1)^{v^{(i)} \cdot y}<y\left|\otimes<f_{j}\right|\right) \text {. } \\
& \left.\left(\mid y_{0}\right)<y_{0} \mid \otimes I_{n-k}\right)\left(\sum _ { y ^ { \prime } \in H ^ { + } } \frac { 1 } { Z ^ { n + k } } \sum _ { j ^ { \prime } = 1 } ^ { 2 ^ { n - k } } (- 1) ^ { \kappa ^ { (i ^ { \prime }) \cdot y ^ { j } } } \left(y^{j}>\otimes\left(f_{j}\right)\right.\right.
\end{aligned}
$$

So the above quadruple sum simplifies to:

- 0 if $y_{0} \notin H^{\perp}$
- and if $y_{0} \in H^{+}$, we detain:

$$
\frac{1}{2^{2(n-k)}} \sum_{j=1}^{2^{n-k}} \underbrace{(-1)^{v^{(i)} \cdot y_{0}+v^{(j)} \cdot y_{0}}}_{=1}=\frac{2^{n-k}}{2^{2(n-k)}}=\frac{1}{2^{n-k}}
$$

ie. the outcome probabilities are uniform aver H^{\perp}.

Simar's algorithm is then the follaing:

- run $n-k$ times the above circuit \rightarrow outputs $y^{(1)} \cdots y^{(n-k)}$ uniformly and independently distributed on H^{+}
- If $y^{(1)} \ldots y^{(n-k)}$ are linearly independent, then these form a basis of H^{\perp}, which is of dimension $n-k$.

From this basis, compute the basis of the dud space H, via a classical algorithen. (Gauss elimination - runtime $O\left(n^{3}\right)$). In this case, declare success.

- If $y^{(n)} \cdots y^{(n-k)}$ are not linearly independent then declare failure and restart the algorithm. (NB : In practice, ane can do better.)

$$
\begin{aligned}
& \text { Claim: } \operatorname{prob}(\text { success }) \geq \frac{1}{4} \\
& \text { Proof: } \cdot \operatorname{prob}\left(y^{(1)} \neq 0\right)=1-\frac{1}{2^{n-k}} \\
& \text { - } \operatorname{prob}(y^{(1)} \notin \underbrace{\left.\operatorname{span}\left(y^{(1)}\right) \mid y^{(n)} \neq 0\right)=1-\frac{2}{2^{n-k}}=1-\frac{1}{2^{n+1}}}_{=\left\{0, y^{(1)}\right\}} \\
& \text { - } \operatorname{prob}(y^{(1)} \notin \underbrace{\operatorname{span}\left(y^{(1)}, y^{(2)}\right)}_{4 \text { elements }} \mid y^{(1)}, y^{(2)} \ln \text { nodep })=1-\frac{4}{2^{n-k}}=1-\frac{1}{2^{n-k-2}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{prob}\left(y ^ { (n - k) } \notin \operatorname { s p a n } \left(y^{(1)} \cdot \cdot y^{(n-k-1)} \mid y^{(n)} \cdot y^{(n-k-1)}\right.\right. \text { ln molep.)} \\
& =1-\frac{2^{n-k-1}}{2^{n-k}}=1-\frac{1}{2}
\end{aligned}
$$

So fugally,
$\operatorname{prdb}($ success $)=\operatorname{prob}\left(y^{(1)} \ldots y^{(n-k)}\right.$ are lin. indep.)

$$
\begin{aligned}
=\prod_{j=0}^{n-k-1}\left(1-\frac{1}{2^{n-k-i}}\right) & \xlongequal{\uparrow}{ }_{l}=\frac{n-k}{n-k}\left(1-\frac{1}{2^{e}}\right) \\
l & =n-k-j
\end{aligned}
$$

Furthermore:
$\operatorname{prob}($ success $)=\exp \left(\sum_{l=1}^{n-k} \ln \left(1-\frac{1}{2^{2}}\right)\right)$ and using $\ln (1-x) \geqslant-(2 \ln 2) x$ for $0 \leqslant x \leqslant \frac{1}{2}$
So prob(success)

$$
\begin{aligned}
& \geqslant \exp \left(-(2 \ln 2) \frac{\sum_{e=1}^{n-k} \frac{1}{2^{e}}}{\leq 1}\right. \\
& \geqslant \exp (-2 \ln 2) \\
& =2^{-2}=1 / 4 \quad \#
\end{aligned}
$$

Of cause, a success probability of only $\frac{1}{4}$ is not satisfactory; we would like a success prob. $\geqslant 1-\varepsilon$. Let us therefore repeat independently the whole algoithun T times:
prob (failure after T attempts)

$$
\begin{aligned}
& =\operatorname{prob}(\text { failure })^{\top} \leqslant\left(\frac{3}{4}\right)^{\top} \leq \varepsilon \\
& \\
& \text { if } T \geqslant \frac{|\ln \varepsilon|}{|\ln 33 /|}
\end{aligned}
$$

Conclusion: We obtain a success prob $\geqslant 1-\varepsilon$ after $O((n-k) \cdot \| \ln \varepsilon \mid)$ calls to the quantum grade U_{f} (\& a polynomial runtime dominated by the $O\left(n^{3}\right)$ computation of the dual basis). This is to be compared to the $\Omega\left(2^{n}\right)$ calls to the cradle f of any classical algorithm.

