Exercise 1 Difference(s) between Deutsch-Josza's and Simon's circuits
(a) First observe that $\{0,1\}^{n}$ is divided into two sets: H and $H \oplus b$, where b is any vector in $\{0,1\}^{n}$ such that $b \notin H$ (this is because H is a $(n-1)$-dimensional linear subspace of $H)$. Before the final measurement of the first n qubits, the output of the algorithm is

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}}(-1)^{f(x)+x \cdot y}|y\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& =\sum_{y \in\{0,1\}^{n}}\left(\frac{1}{2^{n}} \sum_{x \in H}(-1)^{x \cdot y}-\sum_{x \in H \oplus b}(-1)^{x \cdot y}\right)|y\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& =\sum_{y \in\{0,1\}^{n}}\left(\frac{1}{2^{n}} \sum_{x \in H}(-1)^{x \cdot y}\left(1-(-1)^{b \cdot y}\right)\right)|y\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

So the output probability of a given state $|y\rangle$ is

$$
\left|\alpha_{y}\right|^{2}=\left|\frac{1}{2^{n}} \sum_{x \in H}(-1)^{x \cdot y} \cdot\left(1-(-1)^{b \cdot y}\right)\right|^{2}=\left|\frac{1}{2^{n-1}} \sum_{x \in H}(-1)^{x \cdot y}\right|^{2} \cdot\left|\frac{\left(1-(-1)^{b \cdot y}\right)}{2}\right|^{2}
$$

Because of the first factor in this final expression, the probability is non-zero if and only if $y \in H^{\perp}$. Indeed, if $y \in H^{\perp}$, then $x \cdot y=0$ for every $x \in \mathrm{H}$, so $\sum_{x \in H}(-1)^{x \cdot y}=|H|$. If on the other hand, $y \notin H^{\perp}$, then there exist $x_{0} \in H$ such that $x_{0} \cdot y=1$. So in this case, by the fact that H is a subgroup,

$$
\sum_{x \in H}(-1)^{x \cdot y}=\sum_{x \in H}(-1)^{\left(x+x_{0}\right) \cdot y}=\sum_{x \in H}(-1)^{x \cdot y} \cdot(-1)^{x_{0} \cdot y}=-\sum_{x \in H}(-1)^{x \cdot y}
$$

so the sum is equal to 0 in this case, which proves the above claim.
Finally, H^{\perp} is one-dimensional and contains therefore only two elements, the vector $y=0$ and another non-zero vector. Therefore the output cannot be equal to $y=0$, as this would imply $1-(-1)^{b \cdot y}=1-1=0$, so the only possible output is the non-zero vector of H^{\perp}, which occurs with probability 1 .

Particular cases:

- $n=3$ and $H_{1}=\operatorname{span}\{(1,0,0),(0,1,0)\}:$ in this case, the output is $y=(0,0,1)$ with probability 1 .
- $n=3$ and $H_{2}=\operatorname{span}\{(1,1,0),(0,0,1)\}:$ in this case, the output is $y=(1,1,0)$ with probability 1.
(b) Using Simon's algorithm with the same function f would lead to the same output as above, or the the output $y=0$, with equal probabilities $1 / 2$.

Exercise 2 Outcome probabilities of Simon's algorithm
After one run of Simon's circuit, the success probability of the algorithm is equal to

$$
\left(1-\frac{1}{2^{n-k}}\right)\left(1-\frac{1}{2^{n-k-1}}\right) \cdots\left(1-\frac{1}{2}\right)=\prod_{i=1}^{n-k}\left(1-\frac{1}{2^{i}}\right)
$$

This probability is clearly the largest for $k=n-1$, in which case its value is equal to $1 / 2$ for all values of n (and therefore also asymptotically); it is on the contrary the smallest for $k=1$, in which case it converges to

$$
\prod_{i=1}^{n-1}\left(1-\frac{1}{2^{i}}\right) \underset{n \rightarrow \infty}{\rightarrow} \prod_{i \geq 1}\left(1-\frac{1}{2^{i}}\right) \simeq 0.28
$$

also known as Euler's function $\phi(q)=\prod_{i \geq 1}\left(1-q^{i}\right)$ evaluated in $q=1 / 2$.
Exercise 3 Deutsch-Josza's algorithm with noisy Hadamard gates
(a) First observe that $H_{\varepsilon}^{\dagger}=H_{\varepsilon}$, so

$$
H_{\varepsilon} H_{\varepsilon}^{\dagger}=H_{\varepsilon}^{2}=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{1+\varepsilon} & \sqrt{1-\varepsilon} \\
\sqrt{1-\varepsilon} & -\sqrt{1+\varepsilon}
\end{array}\right)^{2}=\frac{1}{2}\left(\begin{array}{cc}
1+\varepsilon+1-\varepsilon & 0 \\
0 & 1-\varepsilon+1+\varepsilon
\end{array}\right)=I
$$

(b) The state of the system after the first passage of the Hadamard gates is given by

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =H_{\varepsilon}|0\rangle \otimes H_{\varepsilon}|0\rangle \otimes H|1\rangle \\
& =\frac{1}{2}(\sqrt{1+\varepsilon}|0\rangle+\sqrt{1-\varepsilon}|1\rangle) \otimes(\sqrt{1+\varepsilon}|0\rangle+\sqrt{1-\varepsilon}|1\rangle) \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& =\frac{1}{2}\left((1+\varepsilon)|00\rangle-\sqrt{1-\varepsilon^{2}}(|01\rangle+|10\rangle)+(1-\varepsilon)|11\rangle\right) \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Let us write this state as

$$
\left|\psi_{1}\right\rangle=\sum_{x \in\{0,1\}^{2}} \beta_{x}|x\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

where $\beta_{00}=\frac{1+\varepsilon}{2}, \beta_{01}=\beta_{10}=\frac{\sqrt{1-\varepsilon^{2}}}{2}$ and $\beta_{11}=\frac{1-\varepsilon}{2}$. Then the output of the circuit (before the measurement) is given by

$$
\left|\psi_{4}\right\rangle=\frac{1}{2} \sum_{y \in\{0,1\}^{2}}\left(\sum_{x \in\{0,1\}^{2}} \beta_{x}(-1)^{f(x)+x \cdot y}\right)|y\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

So the probability that the output state is $|00\rangle$ when f is constant is given by

$$
\left|\alpha_{00}\right|^{2}=\left(\frac{(1+\varepsilon)+2 \sqrt{1-\varepsilon^{2}}+(1-\varepsilon)}{4}\right)^{2}=\left(\frac{1+\sqrt{1-\varepsilon^{2}}}{2}\right)^{2}
$$

(c) From the above expression, using successively the approximations $\sqrt{1-x} \simeq 1-\frac{x}{2}$ and $(1-x)^{2} \simeq 1-2 x$, both valid for x small, we obtain

$$
\left|\alpha_{00}\right|^{2} \simeq\left(1-\frac{\varepsilon^{2}}{4}\right)^{2} \simeq 1-\frac{\varepsilon^{2}}{2}
$$

So the error probability $\delta \simeq \frac{\varepsilon^{2}}{2}$. In order to ensure $\delta \leq 0.1, \varepsilon$ should be taken less than 0.33 ; for $\delta \leq 0.01, \varepsilon \leq 0.14$ is needed.

Exercise 4 Implementation of Simon's algorithm (optional)
See the attached Jupyter Notebook

