Exercise Set 6: Solution
Quantum Computation

Exercise 1 Difference(s) between Deutsch-Josza’s and Simon’s circuits

(a)

First observe that {0,1}" is divided into two sets: H and H & b, where b is any vector
in {0, 1}™ such that b ¢ H (this is because H is a (n — 1)-dimensional linear subspace of
H). Before the final measurement of the first n qubits, the output of the algorithm is
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So the output probability of a given state |y) is
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Because of the first factor in this final expression, the probability is non-zero if and only
ify € H-. Indeed, if y € H*, then o -y = 0 for every  €H, so Y, (—1)*Y = |H|. If
on the other hand, y ¢ H*, then there exist 2y € H such that z-y = 1. So in this case,
by the fact that H is a subgroup,
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so the sum is equal to 0 in this case, which proves the above claim.
Finally, H+ is one-dimensional and contains therefore only two elements, the vector
y = 0 and another non-zero vector. Therefore the output cannot be equal to y = 0, as
this would imply 1 — (—1)*¥ = 1 —1 = 0, so the only possible output is the non-zero
vector of H+, which occurs with probability 1.

Particular cases:

-n =3 and H; = span{(1,0,0),(0,1,0)}: in this case, the output is y = (0,0, 1) with
probability 1.

-n =3 and Hy = span{(1,1,0),(0,0,1)}: in this case, the output is y = (1,1,0) with
probability 1.

Using Simon’s algorithm with the same function f would lead to the same output as
above, or the the output y = 0, with equal probabilities 1/2.



Exercise 2 Qutcome probabilities of Simon’s algorithm

After one run of Simon’s circuit, the success probability of the algorithm is equal to
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This probability is clearly the largest for K = n — 1, in which case its value is equal to 1/2
for all values of n (and therefore also asymptotically); it is on the contrary the smallest for
k = 1, in which case it converges to
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also known as Euler’s function ¢(q) = [];5, (1 — ¢') evaluated in ¢ = 1/2.

Exercise 3 Deutsch-Josza’s algorithm with noisy Hadamard gates

(a) First observe that HI = H., so
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(b) The state of the system after the first passage of the Hadamard gates is given by
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Let us write this state as
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where [yp = 1%, 01 = P = —V12_52 and p; = % Then the output of the circuit

(before the measurement) is given by
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So the probability that the output state is |00) when f is constant is given by
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¢) From the above expression, using successively the approximations v/1 —x ~ 1 — £ and
(c) p , using y pp V

2
(1 — )% ~ 1 — 2z, both valid for x small, we obtain
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So the error probability § ~ % In order to ensure < 0.1, € should be taken less than

0.33; for 6 < 0.01, € < 0.14 is needed.

Exercise 4 Implementation of Simon’s algorithm (optional)

See the attached Jupyter Notebook



