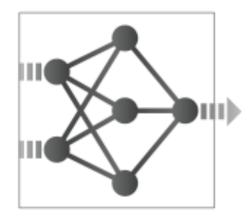
Deep & Convolutional Neural Networks Reinforcement Learning



Companion slides for the book *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies* by Dario Floreano and Claudio Mattiussi, MIT Press

What you will learn in this class

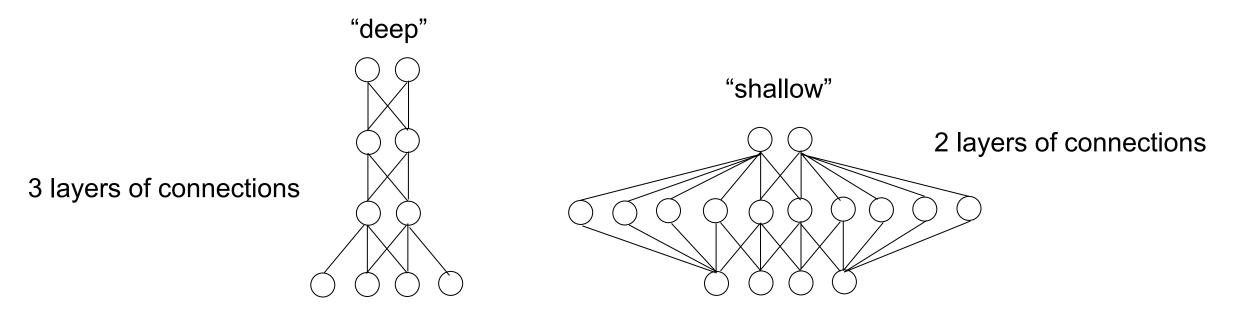
- Supervised learning (continued from last week)
 - Deep learning with autoencoders
 - Deep Convolutional Neural Networks
- The Reinforcement Learning Framework
- Reward and Total Return
- The state-action value function (Q function)
- Value Learning
 - Deep Q Learning
- Policy Learning
 - Policy Gradient Learning

Deep vs. shallow neural networks

<u>Compact distributed encoding (smallest number of computing elements) = better generalization</u>

Compared to compact network of *k layers*, a network of *k-1 layers* requires exponentially larger number of computing elements to achieve same learning error

Given the larger number of weights, the k-1 layered network is likely to have worse generalisation

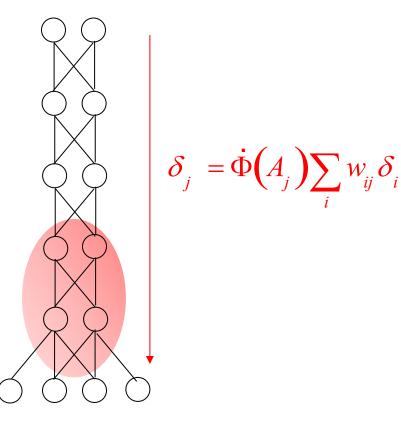


Not all connections are shown

Backpropagation in deep networks

However, Backpropagation yields poor results when applied to networks of many layers (k>3)

The problem lies in poor gradient estimation in the lower layers of the neural network, leading to smaller gradients and thus small weight modifications



Not all connections are shown

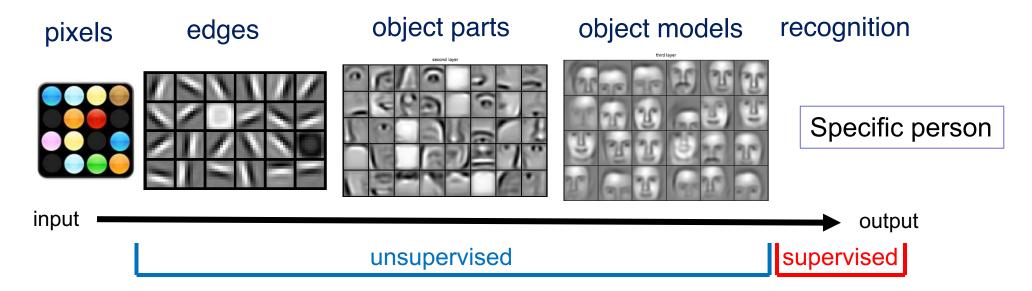
Features represent large data sets in a compact format

What do these images have in common?

$$\sim - 0$$

"Deep learning", one layer at a time

Unsupervised training of low layers to develop increasingly complex <u>feature detectors</u> Supervised training of top layer

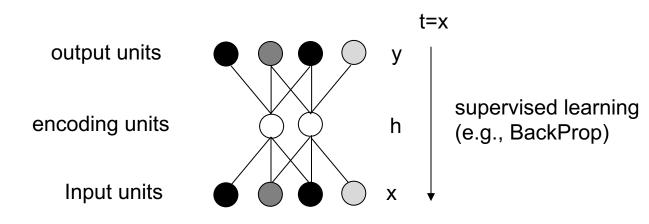


Hinton, Osindero, Teh, 2006 Bengio, Lamblin, Popovici, Larochelle, 2007 Ranzato, Poultney, Chopra, LeCun, 2007 See online also *Learning Deep Architectures for AI* by Yoshua Bengio, 2008

Unsupervised learning with Autoencoders

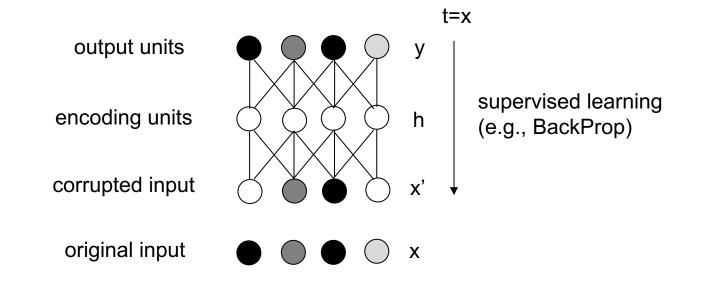
PCA (e.g., Oja's or Sanger's networks) are not suitable for deep networks because they are linear transformation of the input.

Autoencoders are non-linear supervised networks (e.g., Back-prop) that learn to reproduce the input pattern on the output layer. Usually, they have smaller set of hidden units (*encoding units*) to generate a compressed representation, which spans the same space of PCA representation, but <u>use non-linear units</u>.



Denoising Autoencoders (dropout)

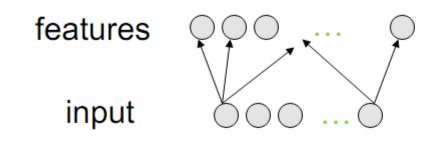
Identity coding problem arises when encoding units are equal or larger than input units

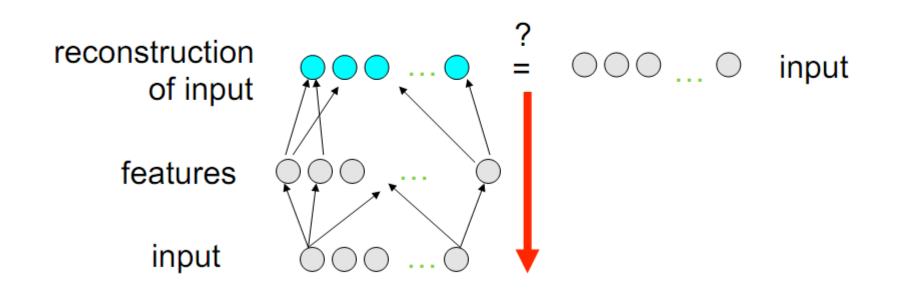


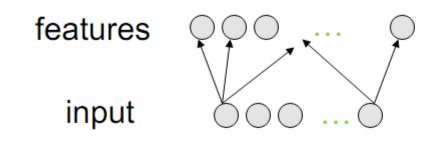
To prevent identity encoding, use *denoising autoencoders* (Vincent et al. 2008): corrupt input by randomly switching off 50% of units while keeping teaching output equal to uncorrupted input

Deep training

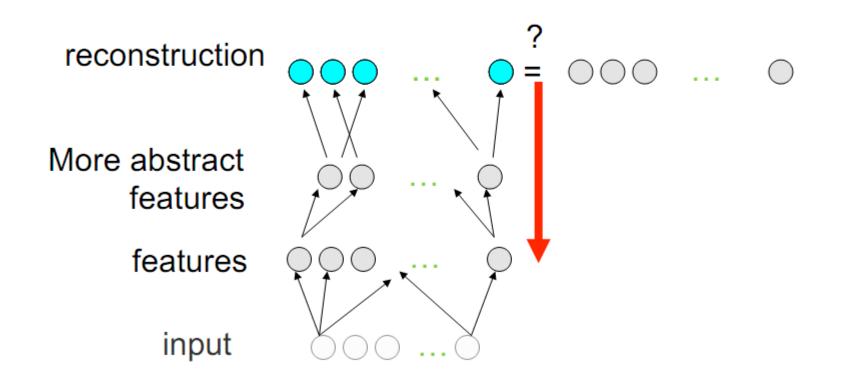
input OOO ... O





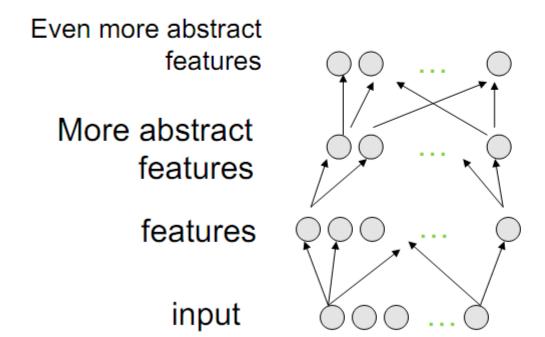


More abstract features features input

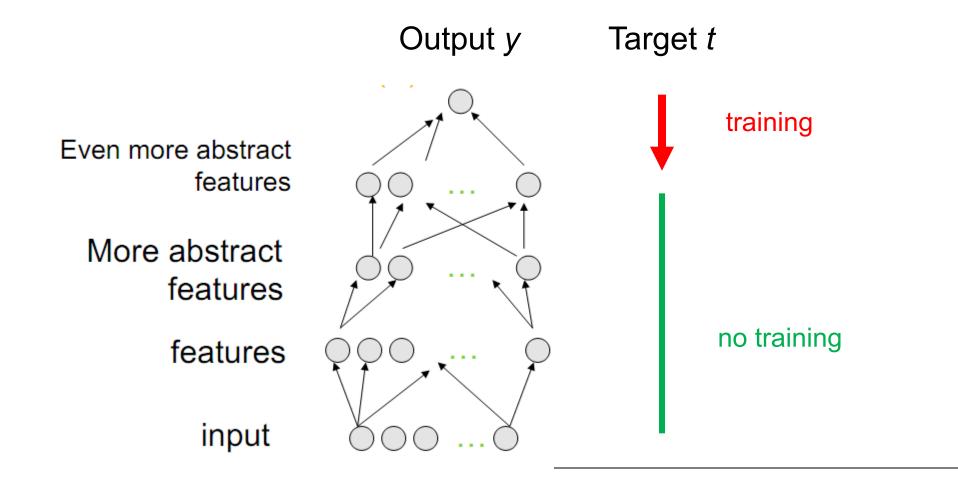


More abstract features features input

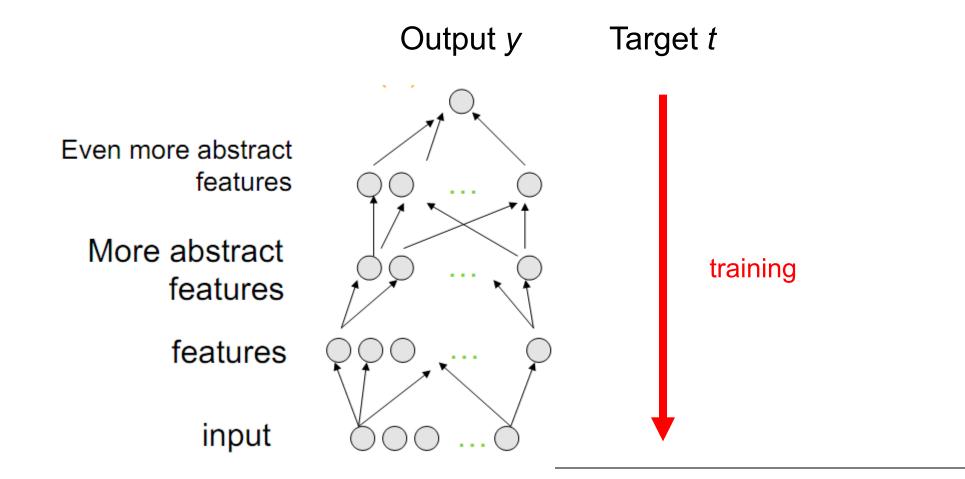
The search of th



Supervised training of top layer

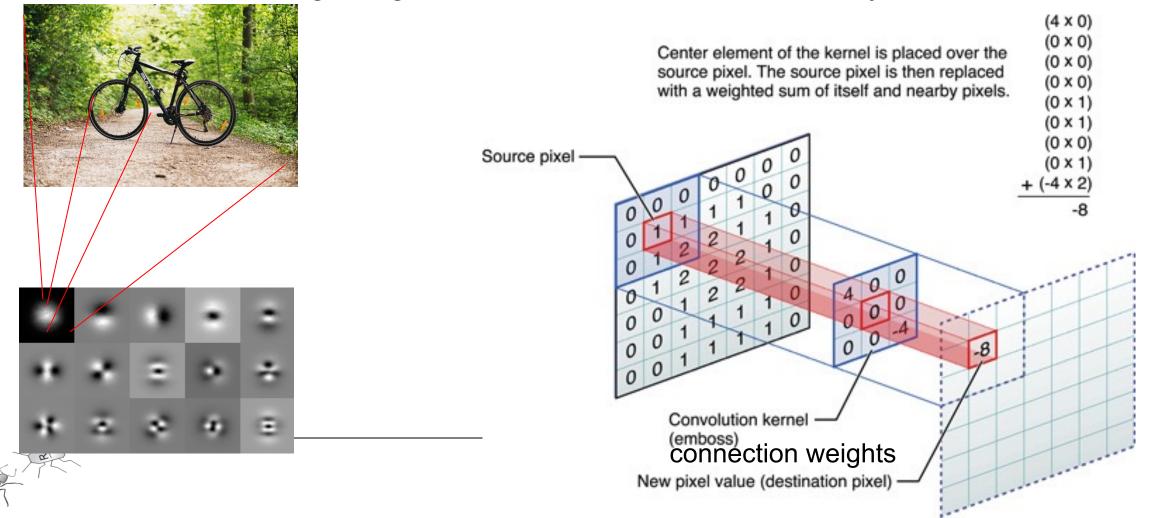


Supervised fine tuning of entire network

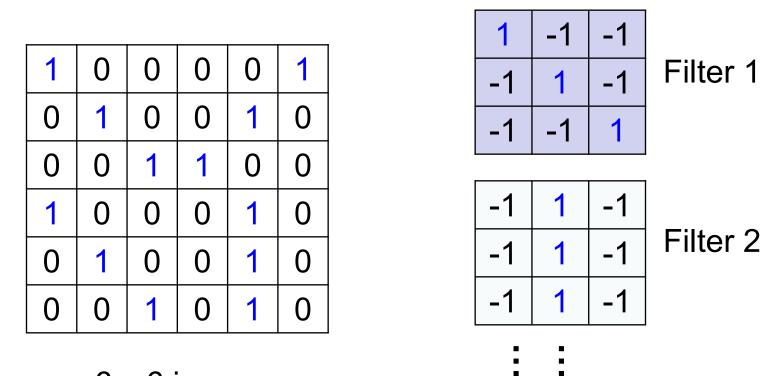


Convolutional Neural Networks

Instead of training weights from all input units to each detector (filter), as autoencoders do, train only weights from few neighboring input units to each detector and convolve image to generate activations of the next layer



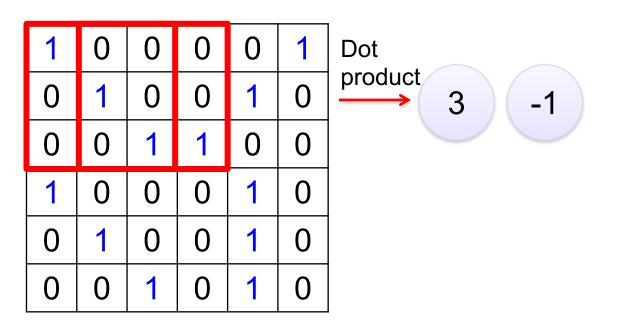
Filter convolution for 2D images



6 x 6 image

Each filter is a feature detector

stride=1



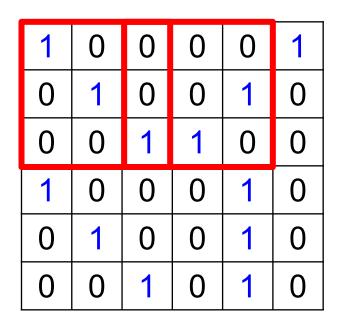
6 x 6 image

3

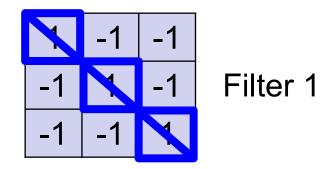
-3

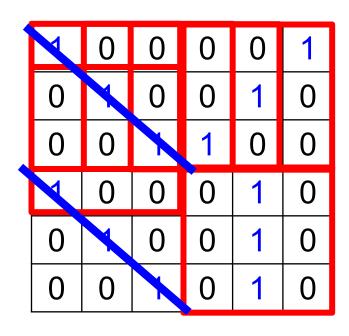
Filter 1

If stride=2

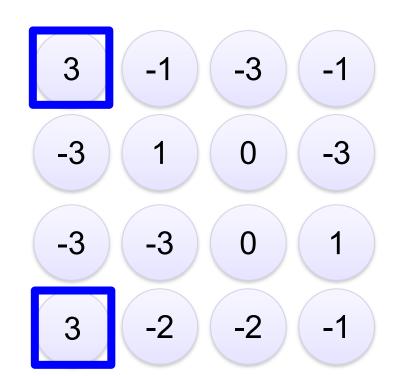


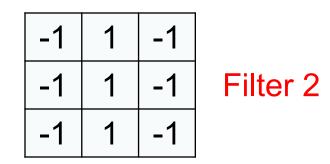
6 x 6 image



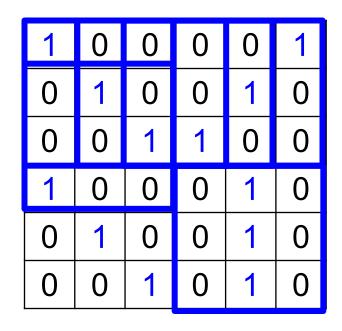


6 x 6 image



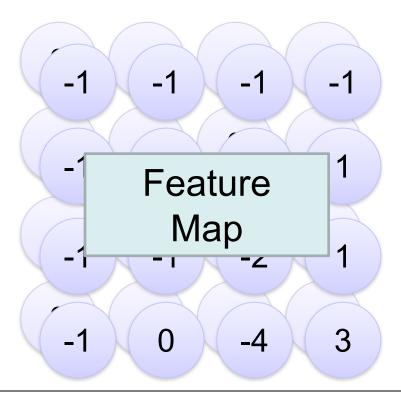


stride=1



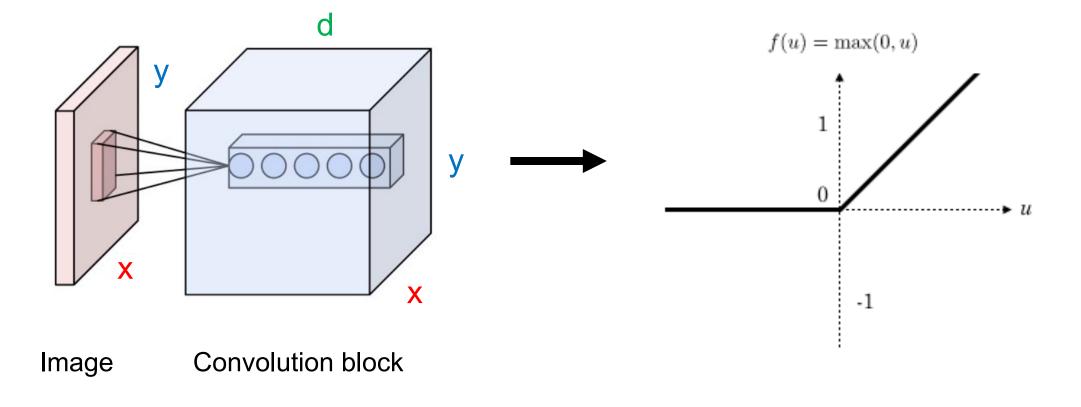
6 x 6 image

Repeat this for each filter



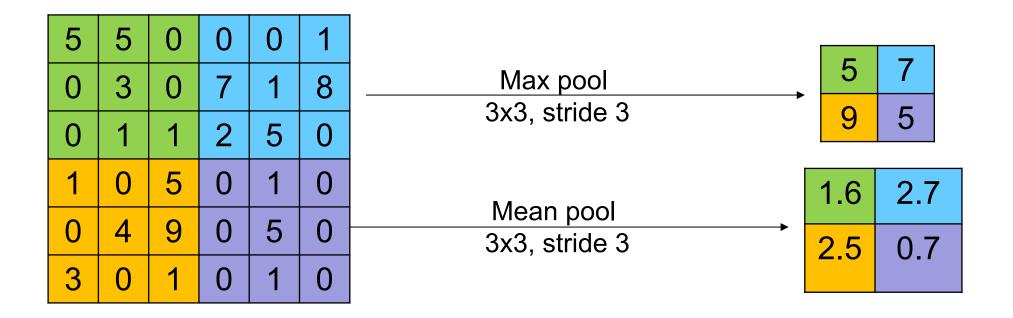
x = image coordinate
y = image coordinate
d = convolutions (different filters)

Add non-linearity to each value in the block, e.g. ReLU function (Rectified Linear Unit)



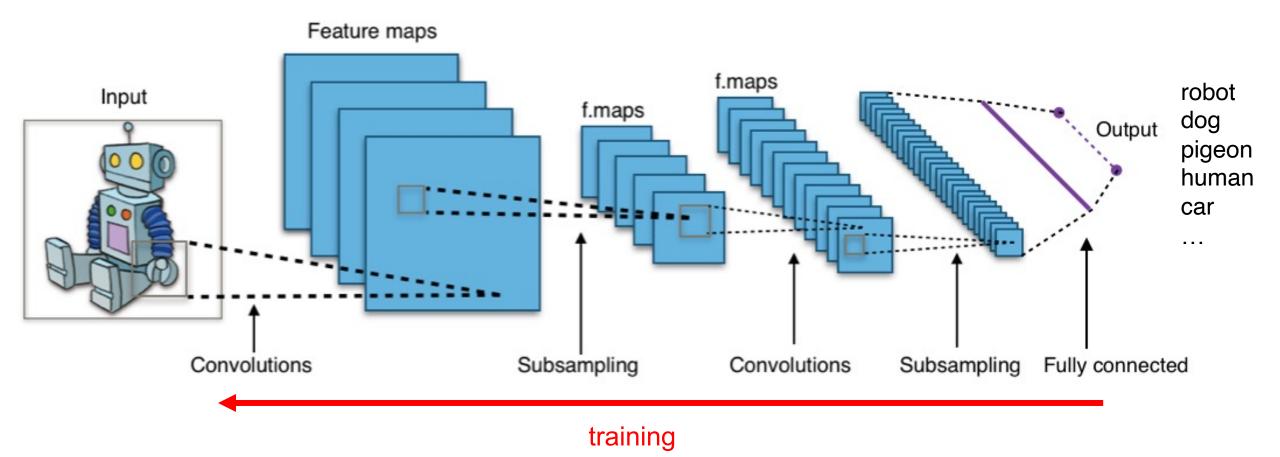
Reduce layer size by Subsampling

Layer is subdivided into pools (e.g., 3x3 neurons) and the content of each pool matrix is replaced by a single value, e.g. maximum or mean value of the pool



Typical Convolutional Neural Network

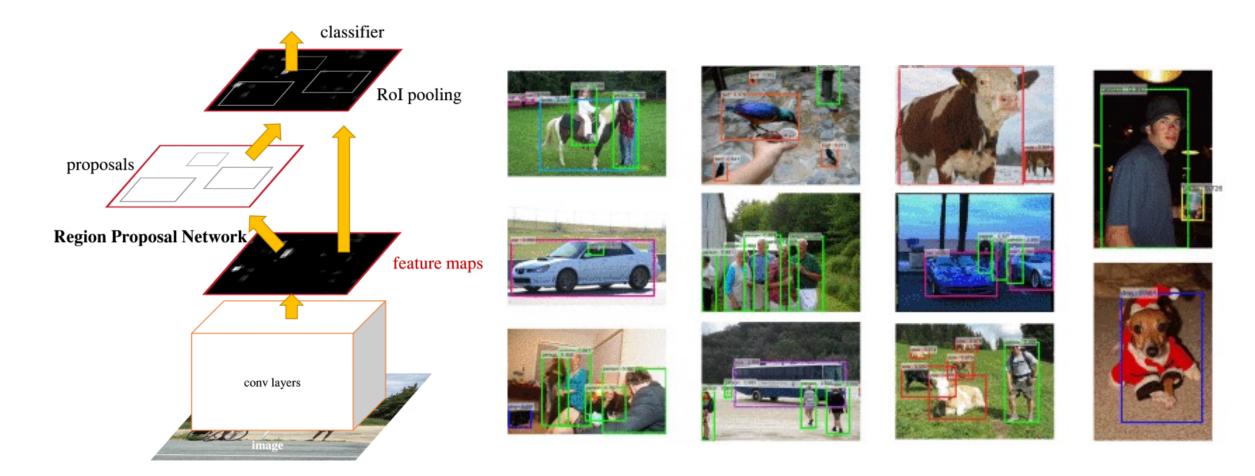
Only weights of one filter per layer are learned to minimize the error (loss) function



- AF

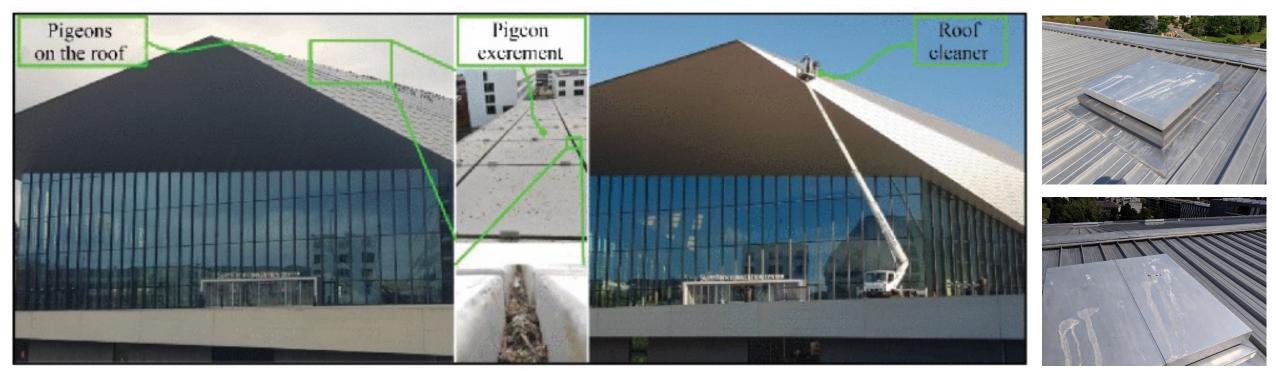
https://en.wikipedia.org/wiki/Convolutional_neural_network Image by Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Learning object classification and positions



S. Ren, K. He, R. Girshick and J. Sun (2017), *IEEE Transactions on Pattern Analysis and Machine Intelligence*, doi: 10.1109/TPAMI.2016.2577031.

Bird detection and deterrence on buildings

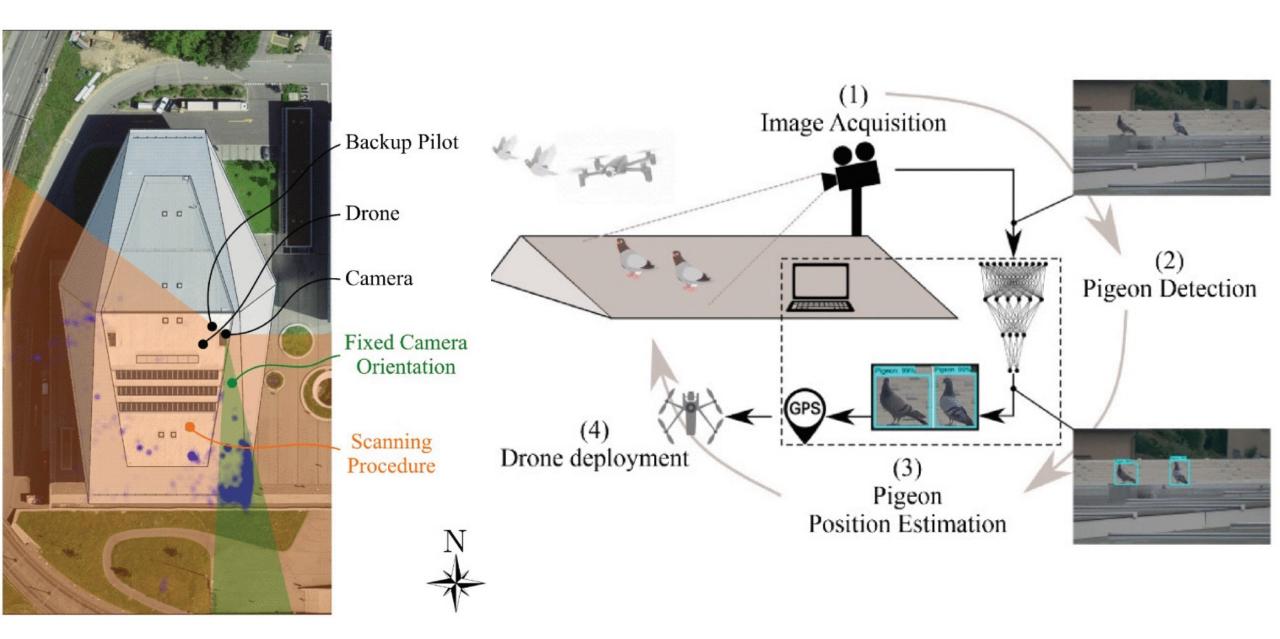


SwissTech building, EPF Lausanne

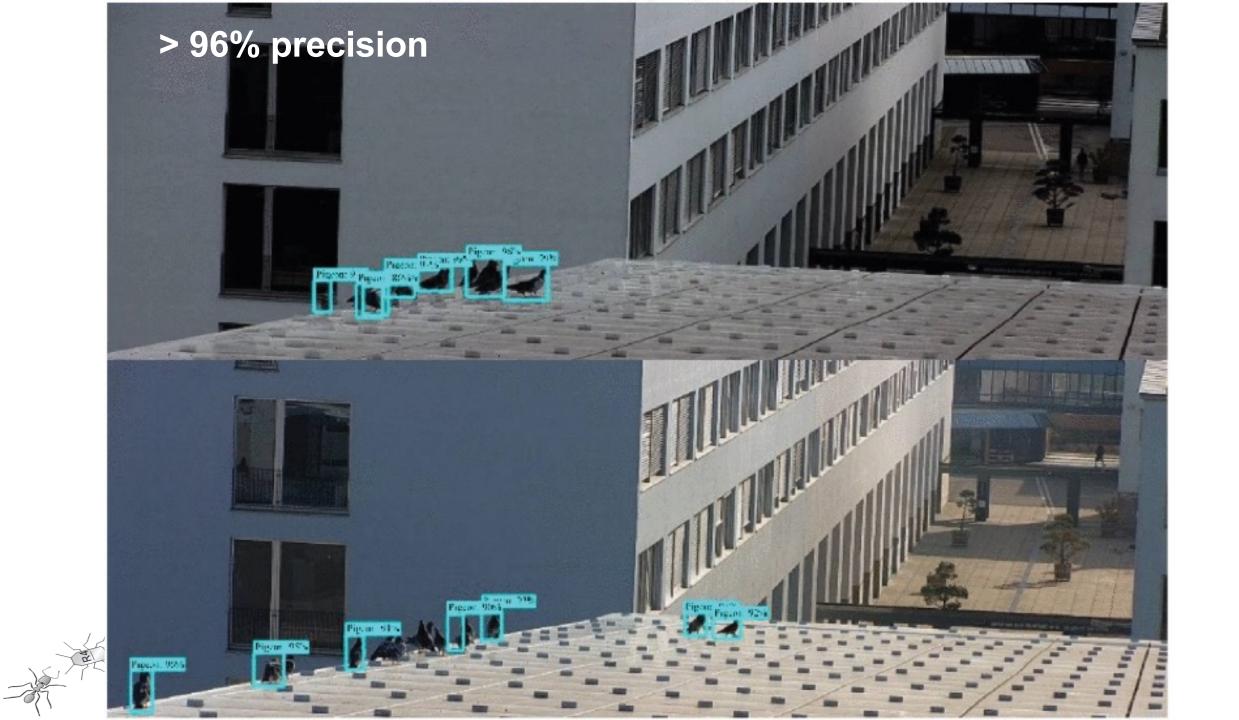
- City pigeon excrements damage buildings and facades
- Cleaning and repair cost up to 1.1 billion USD per year in USA (Pimentel et al, 2000)
- Pigeon droppings are reservoirs of dangerous zoonotic pathogens (Haag-Wackernagel, 2004)

Current solutions

- Require human operator, or
- Are too loud for operation in urban environment, or
- Are dangerous for animals, or
- Are ineffective



F. Schiano, D. Natter, D. Zambrano and D. Floreano (2022) Autonomous Detection and Deterrence of Pigeons on Buildings by Drones, *IEEE Access*, 10, 1745-1755, doi: 10.1109/ACCESS.2021.3137031.



The system in action

Ground camera view

Drone onboard camera view

Without drone system, pigeon flock stay on roof up to 3 hours With drone system, pigeon flock stays up to 4 minutes

Reinforcement learning

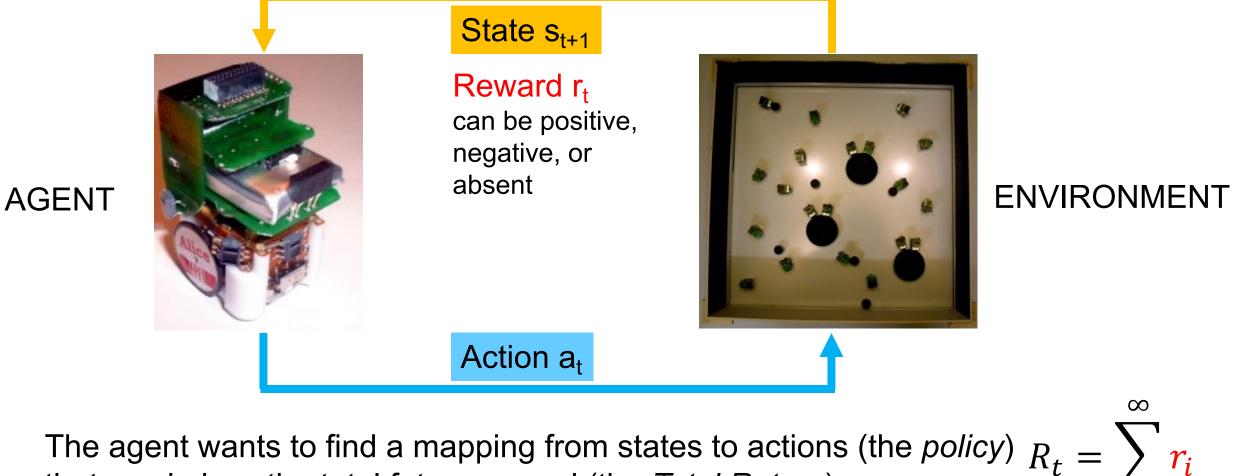
Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)

Reward: r (collected dirt, e.g.)

Goal: learn *behavior* (policy) that maximizes the total future rewards

Companion slides for the book *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies* by Dario Floreano and Claudio Mattiussi, MIT Press

Reinforcement learning framework



that maximizes the total future reward (the *Total Return*)

Reward discount and rollouts

Should all rewards, present and future, have the same weight? The *discount* factor γ is used to give more importance to present rewards than to remote future rewards

$$R_t = \sum_{i=t}^{\infty} \gamma^i r_i \qquad \qquad 0 < \gamma < 1$$

Rollout: the finite number of steps *n* during which the agent interacts with the environment until a terminal event or time limit is reached

$$R_{t} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} + \gamma^{t+2} r_{t+2} \dots + \gamma^{t+n} r_{t+n}$$

The Q Function

$$R_{t} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} + \gamma^{t+2} r_{t+2} \cdots + \gamma^{t+n} r_{t+n}$$

The total return R_t is the discounted sum of all future rewards

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

The Q function describes the *expected* total return that an agent in state s can receive by performing a certain action a. It can also be seen as a look-up table that the agent gradually builds through several rollouts, for example (*fictitious numbers!*):

Rewards	Action A	Action B	Q values	Action A	Action B
State A	3	-3	State A	0	0
State B	1	0	State B	-2	4
State C	2	0	State C	-6	0

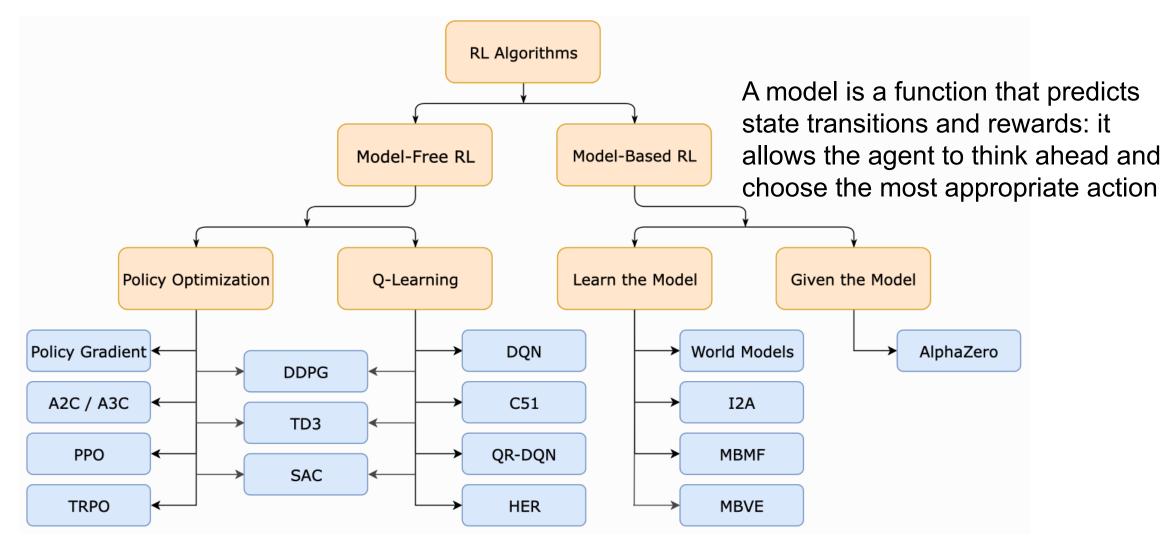
Finding the optimal policy

- A policy $\pi(s)$ is a strategy to select an action a for a state s
- The optimal policy $\pi^*(s)$ is a policy that maximizes the expected total return, which is captured by the Q function

If the agent knows the Q function, the optimal policy consists in finding for each state s the best action a over all possible actions that maximize the Q function

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

A taxonomy of modern RL algorithms (2018)



Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Model-free RL Methods

Q-VALUE LEARNING

Find Q(s, a)

and pick best action $a = \underset{a}{\operatorname{argmax}}Q(s, a)$

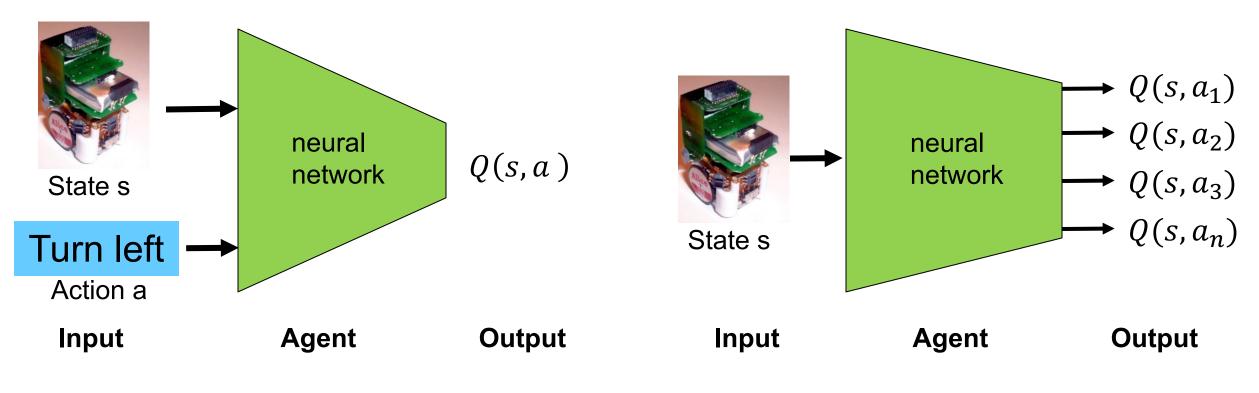
POLICY LEARNING

Directly find $\pi(s)$

and sample (try) action $a \sim \pi(s)$

Deep Q-Networks (DQN)

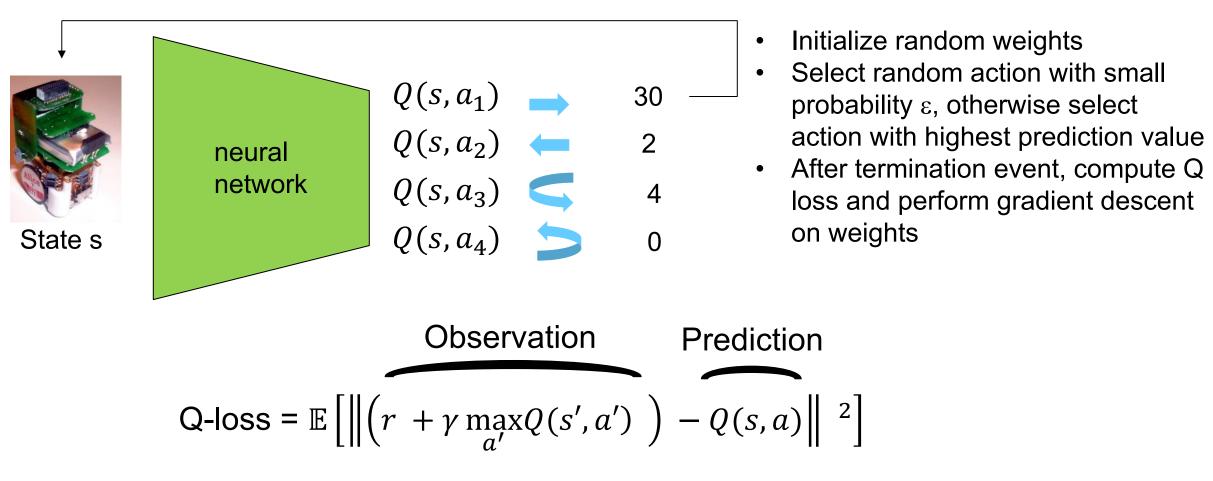
DQN assumes a discrete action space



Problem: Q value must be recomputed for all possible actions at input state s

Solution: ask network to compute Q values for all possible actions of input state s

DQN learning

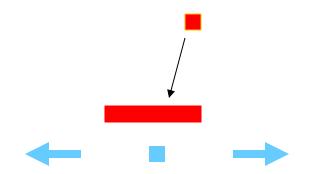


Use back-propagation of error to adapt network weights

DQN learning to play Atari Breakout game

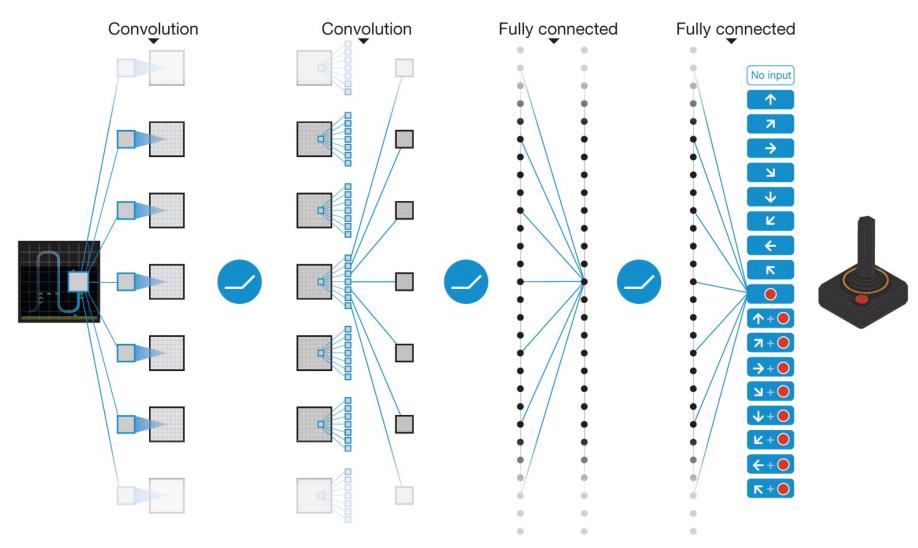
State = screen image

Paddle actions = left, stay, right

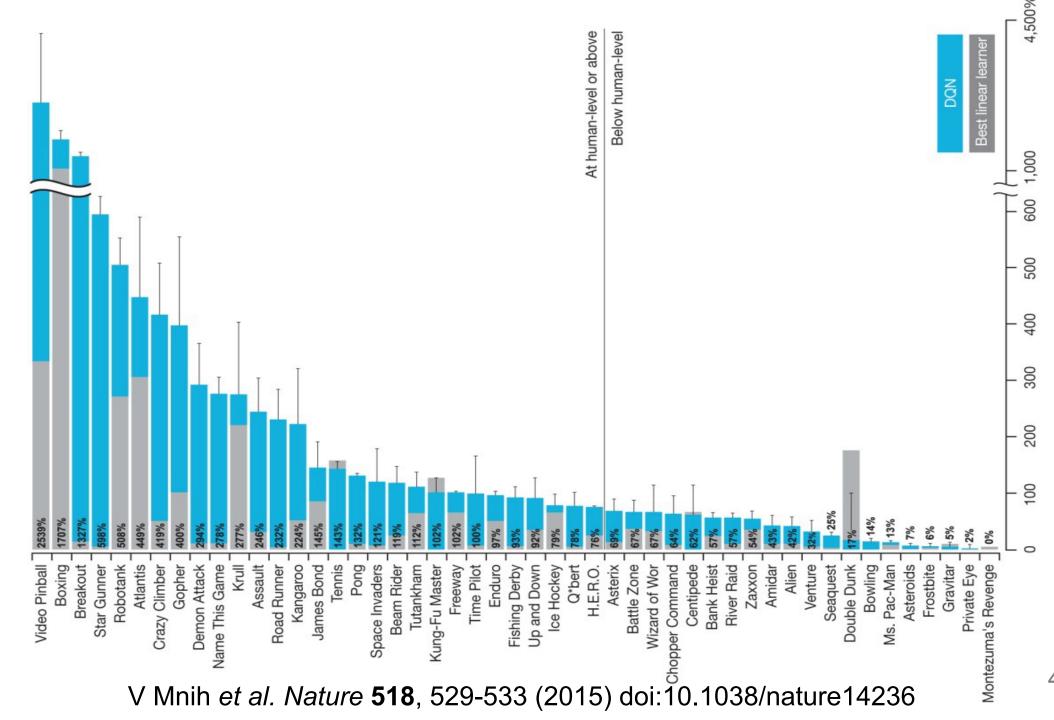


https://www.youtube.com/watch?v=V1eYniJ0Rnk

DQN playing Atari games



V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236



Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy if the Q function is learned

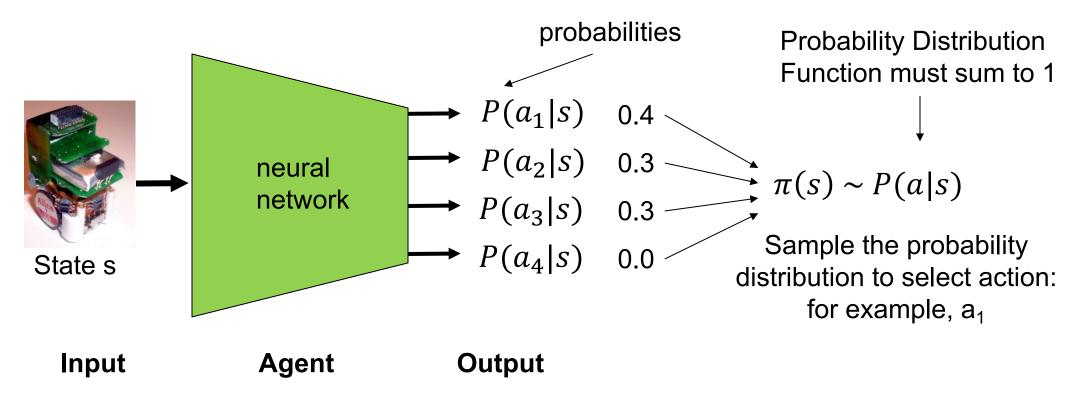
BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

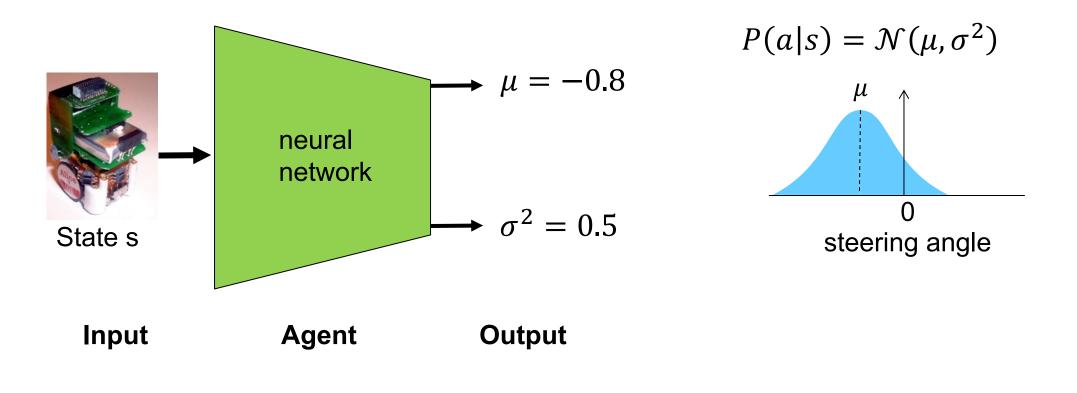
It only works for deterministic situations (it cannot learn stochastic policies)

Policy learning

Directly learn the policy $\pi(s)$: discrete action space



Directly learn the policy $\pi(s)$: continuous action space



Policy Gradient Learning

- 1. Initialize weights of the agent
- 2. Run the agent (*policy*) until termination (*rollout*)
- 3. At each time step of the rollout, record the triplet (s_t, a_t, r_t)
- 4. Increase probability of actions that led to high reward
- 5. Decrease probability of actions that led to low reward

$$loss = -\log P(a_t|s_t) R_t$$

 $\Delta w = -\nabla loss$

 $\Delta w = \nabla \log P(a_t | s_t) R_t$

The loss function increases the probabilities of actions with higher total return and decreases probabilities of actions with lower total return

Weight change is performed after each rollout

For full derivation; https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

An alternative method that does not use gradient ascent is evolutionary computation

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

 (S_1)

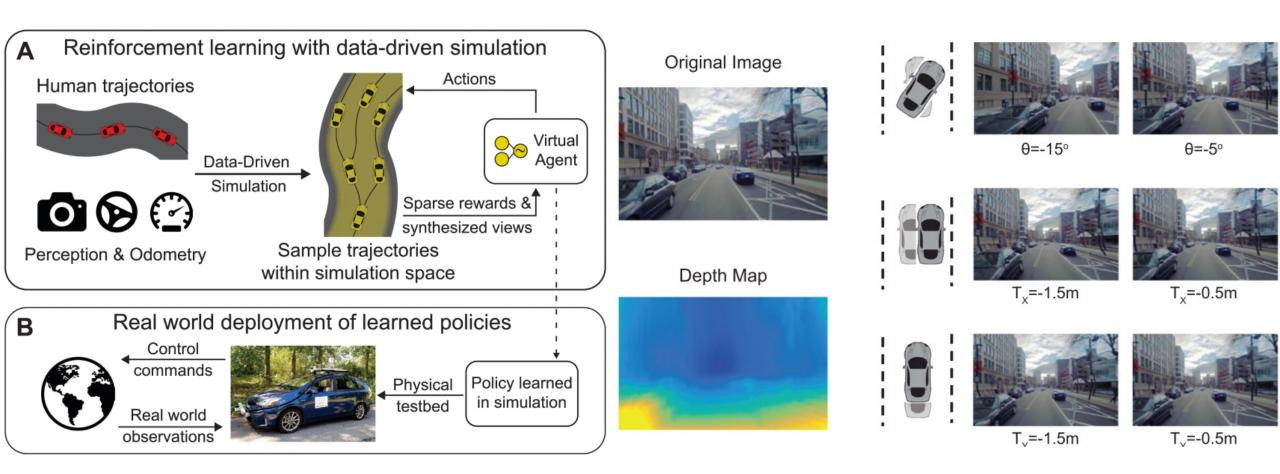
 $i(s_2, a_2, r_2)$

 a_1, r_1)

 \bigcirc (s_3 , a_3 , r_3

 (s_4, a_4, r_4)

Autonomous driving by Policy Gradient Learning



A. Amini *et al.*, Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation, (2020) *IEEE Robotics and Automation Letters*, 5(2), 1143-1150

Contributions

Our paper makes the following contributions

