
Deep & Convolutional Neural Networks
Reinforcement Learning

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 1

What you will learn in this class
• Supervised learning (continued from last week)

• Deep learning with autoencoders

• Deep Convolutional Neural Networks

• The Reinforcement Learning Framework

• Reward and Total Return

• The state-action value function (Q function)

• Value Learning

• Deep Q Learning

• Policy Learning

• Policy Gradient Learning

Deep vs. shallow neural networks

Not all connections are shown

Compact distributed encoding (smallest number of computing elements) = better generalization

Compared to compact network of k layers, a network of k-1 layers requires exponentially larger number
of computing elements to achieve same learning error
Given the larger number of weights, the k-1 layered network is likely to have worse generalisation

3 layers of connections

2 layers of connections

“deep”

“shallow”

Backpropagation in deep networks

However, Backpropagation yields poor results when
applied to networks of many layers (k>3)

The problem lies in poor gradient estimation in the
lower layers of the neural network, leading to smaller
gradients and thus small weight modifications

Not all connections are shown

d
j

=F A
j() w

ij
d
i

i
å

.

Features represent large data sets in a compact format

What do these images
have in common?

“Deep learning”, one layer at a time
Unsupervised training of low layers to develop increasingly complex feature detectors

Supervised training of top layer

pixels edges object parts object models

Specific person

recognition

unsupervised supervised
input output

Hinton, Osindero, Teh, 2006
Bengio, Lamblin, Popovici, Larochelle, 2007
Ranzato, Poultney, Chopra, LeCun, 2007
See online also Learning Deep Architectures for AI by Yoshua Bengio, 2008

Unsupervised learning with Autoencoders
PCA (e.g., Oja’s or Sanger’s networks) are not suitable for deep networks because they are linear
transformation of the input.

Input units

encoding units

output units

h

y

x

t=x

supervised learning
(e.g., BackProp)

Autoencoders are non-linear supervised networks (e.g., Back-prop)
that learn to reproduce the input pattern on the output layer. Usually,
they have smaller set of hidden units (encoding units) to generate a
compressed representation, which spans the same space of PCA
representation, but use non-linear units.

Not all connections are shown

Denoising Autoencoders (dropout)
Identity coding problem arises when encoding units are equal or larger than input units

To prevent identity encoding, use denoising autoencoders (Vincent et al. 2008): corrupt input by
randomly switching off 50% of units while keeping teaching output equal to uncorrupted input

original input

corrupted input

encoding units

output units

x’

h

y

x

t=x

supervised learning
(e.g., BackProp)

Not all connections are shown

Target tOutput y

Supervised training of top layer

training

no training

Target tOutput y

Supervised fine tuning of entire network

training

Convolutional Neural Networks
Instead of training weights from all input units to each detector (filter), as autoencoders
do, train only weights from few neighboring input units to each detector and convolve

image to generate activations of the next layer

connection weights

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

……

Each filter is a feature detector

Filter convolution for 2D images

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1

stride=1

Dot
product

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -3

If stride=2

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Feature
Map

Image Convolution block

x

y

x

y

d

x = image coordinate
y = image coordinate
d = convolutions (different filters)

Add non-linearity to each value
in the block, e.g. ReLU function
(Rectified Linear Unit)

5 5 0 0 0 1
0 3 0 7 1 8
0 1 1 2 5 0
1 0 5 0 1 0
0 4 9 0 5 0
3 0 1 0 1 0

5 7
9 5

Reduce layer size by Subsampling

1.6 2.7

2.5 0.7

Max pool
3x3, stride 3

Mean pool
3x3, stride 3

Layer is subdivided into pools (e.g., 3x3 neurons) and the content of each pool
matrix is replaced by a single value, e.g. maximum or mean value of the pool

Typical Convolutional Neural Network

https://en.wikipedia.org/wiki/Convolutional_neural_network
Image by Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Only weights of one filter per layer are learned to minimize the error (loss) function

robot
dog
pigeon
human
car
…

training

Learning object classification and positions

S. Ren, K. He, R. Girshick and J. Sun (2017), IEEE Transactions on Pattern Analysis and Machine
Intelligence, doi: 10.1109/TPAMI.2016.2577031.

Bird detection and deterrence on buildings

• City pigeon excrements damage buildings and facades
• Cleaning and repair cost up to 1.1 billion USD per year in USA (Pimentel et al, 2000)
• Pigeon droppings are reservoirs of dangerous zoonotic pathogens (Haag-Wackernagel, 2004)

SwissTech building, EPF Lausanne

Current solutions

Wang Z. and
Wong K.C., 2018 Credit: Warren Kovach / Alamy Stock PhotoBird-X.com

• Require human operator, or
• Are too loud for operation in urban environment, or
• Are dangerous for animals, or
• Are ineffective

Parrot Anafi

F. Schiano, D. Natter, D. Zambrano and D. Floreano (2022) Autonomous Detection and Deterrence of
Pigeons on Buildings by Drones, IEEE Access, 10, 1745-1755, doi: 10.1109/ACCESS.2021.3137031.

> 96% precision

Without drone system, pigeon flock stay on roof up to 3 hours
With drone system, pigeon flock stays up to 4 minutes

Reinforcement learning

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 35

Goal: learn behavior (policy) that maximizes the total future rewards

Input: state (sensory information, position, energy, e.g.), action (forward, rotate, turn, e.g.)

Reward: r (collected dirt, e.g.)

Reinforcement learning framework

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini 36

AGENT ENVIRONMENT

Action at

State st+1

𝑅! =#
"#!

$

𝑟"The agent wants to find a mapping from states to actions (the policy)
that maximizes the total future reward (the Total Return)

Reward rt
can be positive,
negative, or
absent

Reward discount and rollouts

37

𝑅! =#
"#!

$

𝛾"𝑟"

Should all rewards, present and future, have the same weight?
The discount factor g is used to give more importance to present rewards than
to remote future rewards

𝑅! = 𝛾!𝑟! + 𝛾!%&𝑟!%& + 𝛾!%'𝑟!%'⋯+ 𝛾!%(𝑟!%(

0 < 𝛾 < 1

Rollout: the finite number of steps n during which the agent interacts with
the environment until a terminal event or time limit is reached

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

38

The Q Function
𝑅! = 𝛾!𝑟! + 𝛾!%&𝑟!%& + 𝛾!%'𝑟!%'⋯+ 𝛾!%(𝑟!%(

The total return Rt is the discounted sum of all future rewards

𝑄 𝑠! , 𝑎! = 𝔼 𝑅!|𝑠! , 𝑎!
The Q function describes the expected total return that an agent in state s can receive
by performing a certain action a. It can also be seen as a look-up table that the agent
gradually builds through several rollouts, for example (fictitious numbers!):

Q values Action A Action B
State A 0 0
State B -2 4
State C -6 0

Rewards Action A Action B
State A 3 -3
State B 1 0
State C 2 0

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

39

Finding the optimal policy

If the agent knows the Q function, the optimal policy consists in finding for each state s
the best action a over all possible actions that maximize the Q function

sa, a?
sb, a?
sc, a?
sd, a?
…

A policy 𝜋 𝑠 is a strategy to select an action a for a state s

The optimal policy 𝜋∗(𝑠) is a policy that maximizes the expected
total return, which is captured by the Q function

𝜋∗(𝑠) = argmax
*

)𝑄(𝑠, 𝑎

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

40

A taxonomy of modern RL algorithms (2018)

Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

A model is a function that predicts
state transitions and rewards: it
allows the agent to think ahead and
choose the most appropriate action

Model-free RL Methods

41

Q-VALUE LEARNING POLICY LEARNING

𝑄 𝑠, 𝑎

𝑎 = argmax
*

)𝑄(𝑠, 𝑎

Find

and pick best action

𝜋 𝑠
Directly find

and sample (try) action
𝑎 ~ 𝜋 𝑠

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

42

Deep Q-Networks (DQN)

Turn left

State s

Action a

𝑄 𝑠, 𝑎

Input OutputAgent

Problem: Q value must be recomputed
for all possible actions at input state s

neural
network

State s

𝑄(𝑠, 𝑎&)

Input OutputAgent

𝑄(𝑠, 𝑎')
𝑄(𝑠, 𝑎*)
𝑄(𝑠, 𝑎()

Solution: ask network to compute Q values
for all possible actions of input state s

neural
network

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

DQN assumes a discrete action space

43

DQN learning

State s

𝑄(𝑠, 𝑎&)
𝑄(𝑠, 𝑎')
𝑄(𝑠, 𝑎*)
𝑄(𝑠, 𝑎+)

neural
network

Q-loss = 𝔼 𝑟 + 𝛾max
,!

)𝑄(𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎) '

Observation Prediction

30

2

4

0

Use back-propagation of error to adapt network weights
Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

• Initialize random weights
• Select random action with small

probability e, otherwise select
action with highest prediction value

• After termination event, compute Q
loss and perform gradient descent
on weights

44

https://www.youtube.com/watch?v=V1eYniJ0Rnk

DQN learning to play
Atari Breakout game

State = screen image

Paddle actions = left, stay, right

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

45

DQN playing Atari games

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by
Dario Floreano and Claudio Mattiussi, MIT Press 46V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236

47

Q learning: strengths and limitations

It guarantees the possibility of identifying the optimal policy if the Q function is learned

BUT

It requires a discrete action space (turn left, go forward, stay, etc.)

It only works for deterministic situations (it cannot learn stochastic policies)

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

48

State s

𝑃(𝑎&|𝑠)

Input OutputAgent

neural
network

𝑃(𝑎'|𝑠)
𝑃(𝑎*|𝑠)
𝑃(𝑎+|𝑠)

Policy learning
Directly learn the policy 𝜋 𝑠 : discrete action space

probabilities

0.4

0.3

0.3

0.0

𝜋 𝑠 ~ 𝑃(𝑎|𝑠)

Sample the probability
distribution to select action:

for example, a1

Probability Distribution
Function must sum to 1

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

49

State s

Input OutputAgent

neural
network

Policy learning

Directly learn the policy 𝜋 𝑠 : continuous action space

𝜇 = −0.8

𝜎' = 0.5 steering angle
0

𝜇

𝑃 𝑎 𝑠 = 𝒩 𝜇, 𝜎'

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

50

Policy Gradient Learning
1. Initialize weights of the agent
2. Run the agent (policy) until termination (rollout)
3. At each time step of the rollout, record the triplet 𝑠!, 𝑎!, 𝑟!
4. Increase probability of actions that led to high reward
5. Decrease probability of actions that led to low reward

𝑙𝑜𝑠𝑠 = − log 𝑃 𝑎!|𝑠! 𝑅!

∆𝑤 = −∇𝑙𝑜𝑠𝑠
∆𝑤 = ∇ log 𝑃 𝑎!|𝑠! 𝑅!

The loss function increases the probabilities of
actions with higher total return and decreases
probabilities of actions with lower total return

Weight change is performed after each rollout

x

𝑠!, 𝑎!, 𝑟!

𝑠", 𝑎", 𝑟"

𝑠#, 𝑎#, 𝑟#

𝑠$, 𝑎$, 𝑟$

Adapted from MIT 6.S191: Reinforcement Learning, by Alexander Amini

An alternative method that does not use gradient ascent is evolutionary computation

For full derivation; https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

A. Amini et al., Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven
Simulation, (2020) IEEE Robotics and Automation Letters, 5(2), 1143-1150

Autonomous driving by Policy Gradient Learning

