Quantum cauputation: lecture 5

- Simar's problem
- Classical method(s) of resolution
- Simon's quantum algorithm Part I: quantum circuit

Sinai's problem
Let $f:\{0,1\}^{n} \rightarrow x$ be a function such that $f(x)=f(y)$ iff:

- either $x=y$
- or $x \oplus a=y$ for some ae $\{0,1\}^{n} \backslash\{0\}$

NB:- X to be defined later

- a is unknown

Our aim: to discover the value of $a \neq 0$ by asking as few questions as possible to the oracle f.

- Classically, this requires $O\left(2^{n}\right)$ calls (see below)
- Simon's quantum algorithm finds the vector a with probability $\geqslant 1-\varepsilon$ in runtime poly $(n) \cdot|\log \varepsilon|$ (\& similar number of calls to the oracle)

Example with $n=3$

$$
\begin{aligned}
& a=(0,1,0) \\
& f(x \oplus a)=f(x) \quad \forall x \in\{0,1\}^{\}}
\end{aligned}
$$

Image space X must be of cardinality 4 here.
In general, $|x|=\frac{2^{n}}{2}=2^{n-1}$.

Classical algorithm

- draw randanly pars of points in $\{0,1\}^{n}$ (with replacement : $\left(x^{(1)}, y^{(1)}\right) \ldots\left(x^{(9)}, y^{(1)}\right)$
- If for one such part (say $j), f\left(x^{(j)}\right)=f\left(y^{(j)}\right)$, canpute $a=x^{(i)} \odot y^{(i)}\left(=x^{(i)} \odot x^{(i)}\right.$ by the war $)$ and declare success
- on the contrary, if $f\left(x^{(j)}\right)=f\left(y^{(j)}\right) \quad \forall 1 \leq j \leq q$ then declare failure

Lemma

$$
\mathbb{P}(\text { success }) \leq \frac{9}{2^{n}-1}
$$

$\binom{$ So in order to ensure $\mathbb{P}($ success $) \geqslant 1-\varepsilon}{,q \geqslant\left(2^{n}-1\right)(1-\varepsilon)$ draws are needed }

$$
\begin{aligned}
& \text { Proof: } \mathbb{P}(\text { success })=\mathbb{P}\left(\exists 1 \leq j \leq q \text { with } f\left(x^{(i)}\right)-f\left(y^{(1)}\right)\right) \\
& \leq \sum_{j=1}^{q} P \underbrace{P\left(f\left(x^{(i)}\right)=f\left(y^{(i)}\right)\right)} \leq 9 / 2^{n}-1 \\
& =\frac{1}{2^{\prime \prime}-1} \text { (for a given } x \text {, there) }
\end{aligned}
$$

Slightly better (classical) algorithm
Bay pb: randan sampling in a sot on N elenati
\rightarrow order \sqrt{N} trials until you see two identical elements
$\Rightarrow O\left(2^{n / 2}\right)$ draws needed only, but this is still exponential in n

Slight generalization

$$
G=\{0,1\}^{n}=\text { gramp }=\text { vecter space }
$$

$H=$ sub.graup of G \& sub.vector space
unknain $=\operatorname{span}\left\{h^{(1)}, \ldots, h^{(k)}\right\} \quad k$-dimensianal $h n$. independent \rightarrow subspace

$$
f:\{0,1\}^{n} \rightarrow X \text { s.t } f(x)=f(y)
$$

价 $x \in y \in H$

Cardinalities

- $|G|=2^{n}$
- $H k$-dimensional $\Rightarrow|H|=2^{k}$
- So f takes possibly 2^{n-k} values $=|X|$ A passible option for X is therefore $X=G / H$ with $|x|=|G / H|=|G| /|H|=2^{n-k}$ Lagrange's tho
- Equivalence relation: $x \sim y$ iff $x o y \in H$
- The group G can then be divided into 2^{n-k} equivalence classes, namely there exist $v^{(n)} \ldots v^{\left(2^{n-k}\right)}$, representatives of each class, such that

$$
G=\bigsqcup_{j=1}^{2^{n-k}}\left\{v^{(j)} \oplus H\right\}
$$

dicjant union

Example with $n=3$ \& $k=2$:

$$
\begin{aligned}
H=\{ & (0,0,0),(1,0,0), \\
& (0,1,0),(1,1,0)\}
\end{aligned}
$$

$$
|x|=2
$$

eq. Classes are H \& $H \oplus(0,1,0)$

Simon's quantum algorithm

Stage $0:\left|\psi_{0}\right\rangle=\underbrace{|0\rangle \otimes \ldots|0\rangle}_{n \text { times }} \otimes \underbrace{(0) \otimes \ldots|0\rangle}_{n-k \text { times }}$
Stage 1:

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\left(H^{\otimes n} \otimes I_{n-k}\right)\left|\psi_{0}\right\rangle \\
& =H^{(\otimes n}|0 \ldots 0\rangle \otimes|0 \ldots 0\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{x_{1}-x_{n} \in\{0,1\}}\left|x_{1} \ldots x_{n}\right\rangle \otimes|0 \ldots 0\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes|0 \ldots 0\rangle
\end{aligned}
$$

Note that contrary to the D-I algorithen, the $n-k$ ancilla bits are left untouched before the passage through the oracle If.
Stage 2: The crack U_{f} is defined as:

$$
\left.U_{f}(\mid x) \otimes|y\rangle\right)=|x\rangle \otimes|y \oplus f(x)\rangle
$$

but here, both $y \& f(x)$ are $(n-k)$-dimensional.

So $\left|\psi_{2}\right\rangle=U_{f}\left|\psi_{1}\right\rangle=\frac{1}{2^{1 / 2}} \sum_{x \in\left\{9911^{n}\right.}|x\rangle \otimes|f(x)\rangle$
Stage 3:
Again, following what was done for $D-I^{-}$s algorithm, we have:

$$
\begin{aligned}
& H^{\otimes n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y \in\{9\}^{n}}(-1)^{x \cdot y}|y\rangle \\
& \text { so } \\
& \left|\psi_{3}\right\rangle=\left(H^{\otimes n} \otimes I\right)\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{x, y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle^{(\otimes|f(x)\rangle}
\end{aligned}
$$

Let us rewrite this:
Let $v^{(1)} \ldots v^{\left(2^{n-t}\right)}$ be the representatives of the equivalence classes of G.
(the sum over the x^{\prime} 's has been split into two sums: $\sum_{j=1}^{2^{n-k}} \sum_{h \in H}$)

So

$$
\left.\left|\psi_{3}\right\rangle=\sum_{y \in\left\{9,13^{-1}\right.} \frac{1}{2^{n}} \sum_{j=1}^{2^{n-k}}(-1)^{v^{(j)} \cdot y}\left(\sum_{n \in H}(-1)^{n \cdot y}\right)|y\rangle \otimes \right\rvert\,\left(j_{j}\right\rangle
$$

Now: matrix repp: $H=\left(\begin{array}{c}h^{(1)} \\ i \\ h^{(k)}\end{array}\right)=k \times n$ matrix whose kernel $=H^{\perp}=\left\{x \in\{91\}^{n}: H x=0\right\}$ is an $(n-K)$-dimensional subspace of $\{o, 1\}^{n}$ (and note that $\left(H^{\perp}\right)^{L}=H$)
(© slight nutation aerial)

Observe that $\sum_{h \in H}(-1)^{y-h} \in\left\{0,2^{k}\right\}$:

- if $y \in H^{\perp}$, then $y \cdot h=0 \quad \forall h \in H$ So $\sum_{h \in H}(-1)^{y \cdot h}=2^{k}$ in this case
- if $y \notin H^{+}$, then $\exists h^{(0)} \in H$ s.t. $h^{(d)} \cdot y=1$, and $\sum_{h \in H}(-1)^{y \cdot h}=\sum_{h^{\prime} \in H}(-1)^{y\left(h^{(b)}+h^{\prime}\right)}=-\sum_{h^{\prime} \in H}(-1)^{y \cdot h^{\prime}}$ so this sum is equal to 0 .

Finally, we obtain:

$$
\left|\psi_{3}\right\rangle=\sum_{y \in H^{\perp}}\left(\frac{1}{2^{n-k}} \sum_{j=1}^{2^{n-k}}(-1)^{v^{(2)} \cdot h}\right)|y\rangle \otimes\left|f_{j}\right\rangle
$$

To be cantimed next week...

