Stellar orbits

$1^{\text {st }}$ part

Outlines

Orbits

- some generalities

Lagrangian and Hamiltonian mechanics

- Euler-Lagrange equations
- Hamilton's equations

Orbits in spherical potentials

- angular momentum conservation
- equations of motion
- radial orbits
- non radial orbits

Examples of orbits in spherical potentials

- Keplerian orbits
- orbits in an homogeneous sphere
- important remarks

Orbits

Generalities

Stellar orbits

Why studying stellar orbits ?

- understand the motion of stars in stellar systems and galaxies
\rightarrow understand the observed kinematics
\rightarrow constraints the mass model

We will assume :

- a smoothed gravitational field
- time independent potentials

Stellar orbits

Definitions

- trajectory
solution of the equation of motion

$$
\ddot{\vec{x}}=-\vec{\nabla} \Phi(\vec{x})
$$

defined on a finite interval:

$$
\vec{x}(t), \vec{x}\left(t_{0}\right)=\overrightarrow{x_{0}}, t \in\left[t_{0}, t_{1}\right]
$$

- orbit
a trajectory defined on an infinite time interval

$$
\vec{x}(t), \vec{x}\left(t_{0}\right)=\overrightarrow{x_{0}}, t \in[-\infty, \infty[
$$

- periodic orbit a closed orbit

$$
\forall t, \exists T, \vec{x}(t+T)=\vec{x}(t), \dot{\vec{x}}(t+T)=\dot{\vec{x}}(t)
$$

- stationary point a point such that:

$$
\ddot{\vec{x}}=\dot{\vec{x}}=0
$$

Stellar orbits

Lagrangian and Hamiltonian mechanics

Lagrangian Mechanics
Assume a mass point moving in a Force field $\hat{F}(\bar{x})$

Definition Lagrangian, a scalar function of \hat{x}, \dot{x}, t

$$
\mathcal{L}(\vec{x}, \vec{x}, t)=K-V=\frac{1}{2} m \dot{\dot{x}}^{2}-V(\vec{x}, t)
$$

Principle of least action or Hamiltonian principle

The motion of the particle from \vec{x}_{0} to \vec{x}_{1} is along a curve $\vec{x}(t)$ such that $\vec{x}\left(t_{0}\right)=\hat{x}_{0}, \vec{x}\left(t_{n}\right)=\vec{x}_{n}$ that is an extremal of the action I.

$$
I=\int_{t_{0}}^{t_{1}} \mathcal{L}(\bar{x}, \dot{x}, t) d t=\int_{t_{0}}^{t_{1}} k(t)-V(t) d t
$$

Euler - Lagrange equation
The trajectory is an extremal of I it and only it

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{L}}{\partial \vec{x}}=0
$$

With cathesion coordinates, we get:

$$
m \ddot{\ddot{x}}=-\vec{\nabla} V(\bar{x})
$$

which is nothing else than the secad Newton law.

However: \mathcal{L} can be a tuchion of arbitrary coordinates $(\stackrel{q}{q}, \dot{q})$ "generalized" coordinates $\mathcal{L}(\stackrel{\rightharpoonup}{q}, \dot{q})$.

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)-\frac{\partial \mathcal{L}}{\partial \vec{q}}=0
$$

Lagrange's equations
We cen easily write equations of motions in any coord. system.

Hamiltonian mechanics

Note: Lagrangian mechanics generate $2^{\text {nd }}$ order differential equations

$$
m \ddot{\vec{x}}=-\vec{\nabla} V(\bar{x})
$$

It is always possible to split a $2^{\text {nd }}$ order differential equation into two first order differential equations.

This is what is done in Hamiltonian mechanics

Definition
(1) For \vec{q}, \dot{q}, a set of generalized coordinates, the generalized momentum are

$$
\hat{p}:=\frac{\partial \mathcal{L}}{\partial \dot{\vec{q}}}
$$

Note: inverting $\vec{p}=\vec{p}(\hat{q}, \vec{q})$, it is possible to write $\quad \dot{q}=\dot{q}(\bar{p}, \vec{q})$
(2) Hamiltonian The scalar function

$$
H(\hat{q}, \vec{p}, r):=\vec{p} \cdot \dot{\vec{q}}-\mathcal{L}(\vec{q}, \dot{\vec{q}}, t)
$$

Note: $\dot{\vec{q}}$ is replaced by \vec{q}, \vec{p} through the definition of \vec{p}

Hamilton equations
Compute the total derivative of $H(\vec{q}, \vec{p}, t)=\vec{p} \cdot \dot{\vec{q}}-\mathcal{L}(\vec{q}, \dot{\vec{q}}, t)$
(1) right hand side (dit. with respect of \bar{q}, \bar{p}, t)

$$
\frac{\partial H}{\partial \vec{q}} d \vec{q}+\frac{\partial H}{\partial \vec{p}} d \vec{p}+\frac{\partial H}{\partial t} d t
$$

(2) left hand side (dit with respect of \bar{q}, \vec{q}, t) with $\dot{\underline{q}}=\dot{\bar{q}}(\bar{p})$

$$
\begin{aligned}
& \vec{p} \cdot d \dot{q}+\dot{q} \dot{q} d \vec{p}-\frac{\partial \mathcal{f}}{\partial \vec{q}} d \vec{q}-\frac{\partial \mathcal{q}}{\partial \dot{q}} d \dot{q}-\frac{\partial \mathcal{q}}{\partial t} d t \\
& =-\frac{\partial \mathcal{L}}{\partial \vec{q}} d \stackrel{\rightharpoonup}{q}+\dot{\vec{q}} d \vec{p}+\hat{p} \frac{d \dot{g}}{d \hat{p}} d \vec{p}-\frac{\partial \mathcal{f}}{\partial \dot{q}} \frac{\partial \dot{g}}{\partial \dot{p}} d \vec{p}-\frac{\partial \mathcal{R}}{\partial t} d t \\
& =-\frac{\partial \mathcal{L}}{\partial \dot{q}} d \ddot{q}+\dot{\vec{q}} d \vec{p}-\frac{\partial \mathcal{L}}{\partial t} d t \quad \tilde{\tilde{p}}
\end{aligned}
$$

Equating (1) and (2)

$$
\dot{\dot{q}}=\frac{\partial H}{\partial \vec{p}} \quad-\frac{\partial \mathcal{L}}{\partial \vec{q}}=\frac{\partial H}{\partial \vec{q}} \quad \frac{\partial \mathcal{L}}{\partial t}=-\frac{\partial H}{\partial t}
$$

$$
\dot{\underline{q}}=\frac{\partial H}{\partial \vec{p}} \quad-\frac{\partial \mathcal{L}}{\partial \vec{q}}=\frac{\partial H}{\partial \vec{q}} \quad \frac{\partial \mathcal{L}}{\partial t}=-\frac{\partial H}{\partial t}
$$

Using Euler-Lagrange $\frac{\frac{d}{d t}(\underbrace{\frac{\partial \mathcal{q}}{\partial \dot{p}}}_{\vec{p}})-\frac{\partial \mathcal{L}}{\partial \vec{q}}}{\left(\frac{\partial H}{\operatorname{det} \vec{p}}\right.}{ }^{\frac{\partial \vec{q}}{}}=0$
In conclusion, we have transformed a set of $2^{\text {nd }}$ order differential equations into $2 \times$ more $1^{\text {st }}$ order differential equations:

$$
\begin{aligned}
& \dot{\vec{q}}=\frac{\partial H}{\partial \vec{p}} \\
& \dot{\vec{p}}=-\frac{\partial H}{\partial \vec{q}}
\end{aligned}
$$

$$
\frac{\partial \mathcal{L}}{\partial t}=\frac{\partial H}{\partial t}
$$

Hamilton's equations

Hamiltonian conservation

Lets compute the time derivative of $H(\vec{q}, \vec{p}, t)$

$$
\begin{aligned}
\frac{d}{d t} H(\tilde{q}, \vec{p}, t)= & \frac{\partial H}{\partial \vec{q}} \frac{d \vec{q}}{d t}+\frac{\partial H}{\partial \vec{p}} \frac{d \vec{p}}{d t}+\frac{\partial H}{\partial t} \\
& -\dot{\vec{p}} \cdot \dot{q}+\dot{\underline{q}} \dot{\vec{p}}=0
\end{aligned}
$$

If \mathcal{L} is time independant, ie. $\mathcal{L}=\mathcal{L}(\vec{q}, \dot{q})$
$(\equiv V(\hat{q})$ is time in dependant)

$$
\Rightarrow
$$

By construction, $H(\vec{q}, \vec{p})$ is conserved along a trajectory

Manpertuis principle
The Hamilton principle $\delta \int_{t_{0}}^{t_{1}} \mathcal{L}(\vec{q}, \dot{\vec{q}}, t) d t=0$
For a constant energy H

$$
\begin{aligned}
\int_{t_{0}}^{t_{1}} \mathcal{L}(\vec{q}, \dot{q}, t) d t & =\int_{t_{0}}^{t_{1}} \mathcal{L}(\vec{q}, \dot{\dot{q}}, t)+H\left(\vec{q}, \frac{\partial \mathcal{L}}{\partial \dot{q}}\right) d t \\
& =\int_{t_{0}}^{t_{1}} \mathcal{L}(\vec{q}, \dot{\dot{q}}, t)+\vec{p} \cdot \dot{\vec{q}}-\mathcal{L}(\vec{q}, \dot{\vec{q}}, t) d t \\
& =\int_{t_{0}}^{t_{1}} \vec{p} \cdot \dot{\vec{q}} d t \quad=\int_{\vec{q}}^{\vec{q}_{1}} \vec{p} \cdot d \vec{q}
\end{aligned}
$$

So $\delta \int_{\vec{q}_{0}}^{\vec{q}_{1}} \vec{p} \cdot d \vec{q}=0$ change of variable $\tilde{q}=\dot{\vec{q}} \cdot d t$ Maupertuis principle

Definitions
for a system with n-dimensions

Configuration space $\left(q_{1} \ldots q_{n}\right) \quad n$-dimensions

Momentum space $\quad\left(p_{1} \ldots p_{n}\right) \quad n$-dimensions

Phase space

$$
\begin{aligned}
& \left(q_{1} \ldots q_{n}, p_{1} \ldots p_{n}\right) \quad 2 n \text {-dimensions } \\
= & \left(w_{1} \ldots w_{2 n}\right)
\end{aligned}
$$

Note As Hamilton's equations are $1^{\text {st }}$ order differential equations, a trajectory is uniquely defined by a point in the phase space

Poisson brackets two operators A, B

$$
[A, B]:=\frac{\partial A}{\partial \vec{q}} \frac{\partial B}{\partial \vec{p}}-\frac{\partial A}{\partial \vec{p}} \frac{\partial B}{\partial \vec{q}}=\sum_{i}^{n} \frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}
$$

Hamilton's equations

$$
\dot{w}_{\alpha}=\left[w_{\alpha}, H\right]=\frac{\partial w_{\alpha}}{\partial \vec{q}} \frac{\partial H}{\partial \vec{p}}-\frac{\partial w_{\alpha}}{\partial \vec{p}} \frac{\partial H}{\partial \vec{q}}
$$

$$
\equiv\left\{\begin{array}{l}
\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}} \\
\dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}
\end{array}\right.
$$

Time evolution operator

$$
\overbrace{\left(\overrightarrow{g_{0}}, \hat{p}_{0}\right)}^{(\vec{g}(t), \bar{p}(t))}
$$

It is the possible to define a time evolution operator H_{t} that will bring $\left(\bar{q}_{0}, \bar{p}_{0}\right)$ to $(\hat{q}(t), \hat{p}(r))$

$$
(\tilde{q}(t), \bar{p}(r))=H_{t}\left(\stackrel{q_{0}}{0}, \overline{p_{0}}\right) \equiv \vec{w}(t)=H_{t}\left(\overrightarrow{w_{0}}\right)
$$

H_{t} will map:

- any $2 D$ surface S_{0} in the phase space to
 an other 2D surface S_{t} in the phase space.
- any $2 N-D$ volume V_{0} in the phase space to an other $2 N-D$ volume V_{t} in the phase space.

Phase space volume conservation

$$
\delta w_{0}=\delta w_{t}
$$

The volume on any arbitrary region in phase space is conserved by a Hamiltonian flow.

Poincare invariant theorem

$$
\iint_{S_{0}} d \hat{q} \cdot d \hat{p}=\iint_{S_{t}} d \hat{q} d \hat{p}
$$

Stellar orbits

Orbits in Spherical Systems

Orbits in spherical potentials $\phi(\bar{x})=\phi(r)$

Spherical coordinates

$$
\begin{cases}x=r \cos \varphi \sin \theta & \hat{x}=r \hat{e}_{r}=\vec{r} \\ y=r \sin \sin \theta & r=\sqrt{x^{2}+y^{2}+z^{2}} \\ z=r \cos \theta & \end{cases}
$$

Equation of motion (Newton law)

$$
\frac{d^{2}}{d t^{2}}(\bar{x})=\hat{g}(\bar{x}) \equiv g(r) \stackrel{e}{e}_{r}
$$

$$
g(\tilde{x})=-\bar{\nabla} \phi(\hat{x})=-\frac{\partial}{\partial r} \phi(r) \hat{e}_{r}-\frac{1}{r} \frac{\partial}{\partial \theta} \phi(r) \hat{e}_{\epsilon}-\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \phi(r) \hat{e}_{\varphi}
$$

$$
=g(r) \hat{e}_{r}
$$

with $g(r)=-\frac{\partial}{\partial r} \phi(r)$

Angular momentum conservation

$$
\begin{aligned}
& \hat{L}=\widehat{x} \times \frac{d \widehat{x}}{d t} \quad \text { (specific aligular momentum) } \\
& g(r) \overrightarrow{e r}_{r} \\
& \frac{d}{d t}(\vec{L})=\frac{d \vec{x}}{d t} \times \frac{d \bar{x}}{d t}+\bar{x} \times \frac{d^{2} \vec{x}}{d t^{2}} \\
& =0+r \overrightarrow{e_{r}} \times g(r) \overrightarrow{e_{r}}=0 \\
& =0 \quad(=\vec{N} \text {, the turk) }
\end{aligned}
$$

In a spherical system, the angular momentum of a particle is conserved! $\quad L=$ che
(A spherical potential induces no tort $\hat{N}=\hat{x} \times \hat{F}=0$)

Corollary As \bar{L} is conserved the orbit of a particle is limited to a plane (the orbital plane)

2D problem

Equations of motion in the orbital plane
Polar coordinates (in the orbital plane)

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \varphi } \\
{ y = r \operatorname { s i n } \varphi }
\end{array} \quad \left\{\begin{array}{l}
\dot{x}=r \cos \varphi-r \sin \varphi \dot{y} \\
\dot{y}=r \sin \varphi+r \cos \varphi \varphi
\end{array}\right.\right.
$$

Lagrangian (specific) in polar coordinates

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\phi\left(\sqrt{x^{2}+g^{2}}\right)=\frac{1}{2}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}\right)-\phi(r)
$$

Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)-\frac{\partial \mathcal{L}}{\partial \vec{q}}=0 \quad\left\{\begin{aligned}
r-r \dot{\varphi}^{2}+\frac{\partial \phi}{\partial r} & =0 \\
\frac{d}{d t}\left(r^{2} \dot{\varphi}\right) & =0
\end{aligned}\right.
$$

Angular momentum

$$
r^{2} \dot{\varphi}=|\tilde{L}|=L
$$

Indeed in spherical coordinates

$$
\begin{aligned}
\vec{x} & =r \vec{e}_{r} \\
\vec{v} & =\dot{r} \vec{e}_{r}+r \dot{\varphi} \vec{e}_{\varphi} \\
\vec{L}=\vec{x} \times \vec{v} & =r \vec{e}_{r} \times\left(\dot{r} \vec{e}_{r}+r \dot{\varphi} \vec{e}_{\varphi}\right) \\
& =r^{2} \dot{\varphi} \vec{e}_{z}
\end{aligned}
$$

Hamiltonian/Energy

$$
\begin{aligned}
& \vec{q}=\left\{\begin{array}{l}
r \\
\varphi
\end{array} \quad \dot{q}=\left\{\begin{array}{l}
\dot{r} \\
\dot{\varphi}
\end{array} \quad \vec{p}=\left\{\begin{array}{l}
\frac{\partial \rho}{\partial \dot{r}}= \\
\frac{\partial \rho}{\partial \dot{\varphi}}=r_{r} \quad=p_{r} \\
\end{array}\right.\right.\right. \\
& H\left(r, \varphi, \dot{r}, r^{2} \dot{\varphi}\right)=\dot{r}^{2}+r^{2} \dot{\varphi}^{2}-\frac{1}{2}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}\right)+\phi(r) \\
& =\frac{1}{2}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}\right)+\phi(r)=E
\end{aligned}
$$

or

$$
H\left(r, \varphi, p_{r}, p_{\varphi}\right)=\frac{1}{2} p_{r}^{2}+\frac{1}{2} \frac{p_{\varphi}^{2}}{r^{2}}+\phi(r)=E
$$

E(Energy) is consermed
as \mathcal{L} is time independant

Radial orbits

$$
\dot{\varphi}=0 \quad \Rightarrow \quad L=0
$$

$$
\begin{cases}\text { Equation of motion } & \ddot{r}=-\frac{\partial \phi}{\partial r} \\ \text { Energy } & : \\ & E=\frac{1}{2} \dot{r}^{2}+\phi(r)\end{cases}
$$

3 cases
(1) $E>\phi(00) \Rightarrow \forall t, \dot{r}^{2}>0$
orbit not bounded
(2) $E<\phi(0) \Rightarrow$ impossible
(3) $\phi(0)<E \subset \phi(\infty)$

$$
\begin{gathered}
\exists r f_{q} \dot{r}=0 \quad \text { i.e } \quad E=\phi(r) \\
r=r_{\max }
\end{gathered}
$$

Non radial orbits $\quad r \neq 0 \quad \dot{\varphi} \neq 0 \quad L \neq 0$

$$
\text { EOM }\left\{\begin{array}{l}
\ddot{r}-r \dot{\varphi}^{2}+\frac{\partial \phi}{\partial r} \tag{1}\\
=0 \\
\frac{d}{d t}\left(r^{2} \dot{\varphi}\right)
\end{array}\right.
$$

replace t by $\varphi \quad \frac{d}{d t}=\frac{d}{d \varphi} \dot{\varphi}=\frac{L}{r^{2}} \frac{d}{d \varphi}$
(1) becomes

$$
\frac{L^{2}}{r^{2}} \frac{d}{d \varphi}\left(\frac{1}{r^{2}} \frac{d r}{\partial \varphi}\right)-\frac{L^{2}}{r^{3}}=-\frac{\partial \phi}{\partial r}
$$

use $u=\frac{1}{r}$

$$
\frac{d^{2} u}{d \varphi^{2}}+u=\frac{1}{L^{2} u^{2}} \frac{\partial \phi}{\partial r}\left(\frac{1}{u}\right)
$$

No analytical general solution

Radial energy equation

From the energy $E=\frac{1}{2}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}\right)+\phi(r)$

1) multiply by $\frac{2}{L^{2}}$
2) use $u=\frac{1}{r}$ and $\frac{d}{d t}=\frac{L}{r^{2}} \frac{d}{d \varphi}$
we get

$$
\left(\frac{d u}{d \varphi}\right)^{2}+u^{2}+\frac{2 \phi(\hat{u})}{L^{2}}=\frac{2 E}{L^{2}}
$$

Orbit properties

Minimal radius

As $L \neq 0$, the orbit connect cross the center there must be a minimal radius $\forall \varphi$ such that $\frac{d u}{d \varphi}=0$ Maximal radius

If the orbit is bounded there must be a maximal radius
$\forall \varphi$ such that $\frac{d u}{d \varphi}=0$

For $\frac{d u}{d \varphi}=0 \quad u^{2}=\frac{2[E-\phi(1 / u)]}{L^{2}}$

Notes

- if $u_{1}=u_{2}$
- it $u_{1} \cong u_{2}$
- if u_{1} ss u_{2}
periodic orbit

orbit with a small eccentricity

orbit eccentrically is nearly 1

Plummer

Plummer

Plummer

Plummer

Radial period

Time to travel from the apocenter to the pericenter

$$
T_{r}=2 \int_{t_{1}}^{t_{2}} d t=2 \int_{r(r)}^{r_{2}} \frac{1}{\dot{r}} d r \quad\left\{\begin{array}{l}
r\left(t_{1}\right)=r_{1} \\
r\left(t_{2}\right)=r_{2}
\end{array}\right.
$$

From $E=\frac{1}{2}\left(\dot{r}^{2}+(r \dot{\varphi})^{2}\right)+\phi(r)=\frac{1}{2} \dot{r}^{2}+\frac{L}{2 r^{2}}+\phi(r)$

$$
\begin{aligned}
& \dot{r}^{2}=2(E-\phi(r))-\frac{L^{2}}{r^{2}} \\
& \frac{d r}{d t}=\sqrt{2(E-\phi(r))-\frac{L^{2}}{r^{2}}} \\
& \frac{d t}{d r}=\frac{1}{\sqrt{2(E-\phi(r))-\frac{L^{2}}{r^{2}}}} \\
& T_{r}=2 \int_{r_{1}}^{r_{2}} \sqrt{2(E-\phi(r))-\frac{L^{2}}{r^{2}}}
\end{aligned}
$$

Azimuthal period

$$
T_{\varphi}=\int_{t_{1}^{\prime}}^{t_{2}^{\prime}} d t \quad\left\{\begin{array}{l}
\varphi\left(t_{1}^{\prime}\right)=0 \\
\varphi\left(t_{2}^{\prime}\right)=2 \pi
\end{array}\right.
$$

This defines the angular velocity

$$
: \quad \frac{2 \pi}{T_{\varphi}}
$$

But this angular velocity is also: $\frac{\Delta \varphi}{T_{r}}$
where $\Delta \varphi$ is the increase of the azimuthal angle during T_{r}

So, we have

$$
T_{\varphi}=\frac{e \pi}{|\Delta \varphi|} T_{r}
$$

$$
\begin{aligned}
\Delta \varphi=2 \int_{\varphi_{1}}^{\varphi_{2}} d \varphi=2 \int_{t_{1}}^{t_{2}} \frac{d \varphi}{d t} d t & =2 \int_{r_{1}}^{r_{2}} \frac{d \varphi}{d t} \frac{d t}{d r} d r \\
& =2 \int_{r_{1}}^{r_{2}} \frac{L}{r^{2}} \frac{1}{\sqrt{2(E-\phi(r))-\frac{L^{2}}{r^{2}}}} d r
\end{aligned}
$$

As in general $\frac{2 \pi}{\Delta \varphi}$ is not a rational number the orbit is not guarantee to be closed

Stellar orbits

Spherical Systems

Examples

Examples
(1) Kepler potential (potential of a mass point)

$$
\left\{\begin{array}{l}
\phi(r)=-\frac{G M}{r} \\
\frac{\partial \phi}{\partial r}(r)=\frac{G M}{r^{2}}=G M u^{2}
\end{array}\right.
$$

$$
\frac{d^{2} u}{d \varphi^{2}}+u=\frac{1}{L^{2} u^{2}} \frac{\partial \phi}{\partial r}\left(\frac{1}{u}\right) \quad \Rightarrow \quad \frac{d^{2} u}{d \varphi^{2}}+u=\frac{G M}{L^{2}}
$$

Harmonic equation, with frequency 1

General solution

$$
\frac{d^{2} u}{d \varphi^{2}}+u=\frac{G M}{L^{2}}
$$

In term of r

$$
r(\varphi)=\frac{1}{c \cos \left(\varphi-\varphi_{0}\right)+\frac{G H}{L^{2}}}
$$

Introducing

$$
\begin{cases}e=\frac{C L^{2}}{G M} & \text { eccentricity } \\ a=\frac{L^{2}}{G M\left(1-e^{2}\right)} & \text { semi- major axis }\end{cases}
$$

evaluate u and $\frac{d u}{d t}$ for $\varphi=\varphi_{0} \quad\left(u(\varphi)=\left(\varphi_{0}=C+\frac{G H}{L^{2}} \quad \frac{d u}{d t}(\varphi) \stackrel{\varphi \cdot \varphi_{0}}{=} 0\right)\right.$ + using $\frac{d^{2} u}{d \varphi^{2}}+u=\frac{1}{L^{2} u^{2}} \frac{\partial \phi}{\partial r}\left(\frac{1}{u}\right)$

$$
\left\{\begin{array}{l}
r(\varphi)=\frac{a\left(1-e^{2}\right)}{1+e \cos \left(\varphi-\varphi_{0}\right)} \\
\bar{E}=-\frac{G M}{2 a}
\end{array}\right.
$$

Cases

$$
r(\varphi)=\frac{a\left(1-e^{2}\right)}{1+e \cos \left(\varphi-\varphi_{0}\right)}
$$

$e \geqslant 1$
unbound orbit as $1+e \cos \left(\varphi-\varphi_{0}\right)$ can be $=0$ $\Rightarrow r \rightarrow 00$
$e<1$ bound orbit (ellipse)
pericenter / apocenter

$$
\begin{aligned}
& r_{\text {min }}=\frac{a\left(1-e^{2}\right)}{1+e}=a(1-e) \\
& r_{\text {max }}=\frac{a\left(1-e^{2}\right)}{1-e}=a(1+e)
\end{aligned}
$$

$$
e=0
$$

$r_{\text {min }}=r_{\text {max }}=a$ (circular orbit)

Kepler laws (1609-1619) :

- The orbit of a planet is an ellipse with the Sun at one of the two foci.
- A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

Radial and azimuthal periods:

$$
T_{r}=T_{\phi}
$$

Keplerian orbits (point mass)

Keplerian orbits (point mass)

Keplerian orbits (point mass)

(2) Homogeneous sphere ρ_{0}, R_{0} (Harmonic oscillations)

$$
\begin{array}{ll}
\phi(r) & =\underbrace{-2 \pi G \rho_{0} R_{0}^{2}}_{\text {che }}+\frac{2}{3} \pi G \rho_{0} r^{2} \\
\phi(r) & =\frac{1}{2} \Omega^{2} r^{2}
\end{array} \quad \text { with } \Omega=\sqrt{\frac{4}{3} \pi G \rho_{0}} \quad l l
$$

Equations of motion (in carthesian coordinates)

$$
\begin{aligned}
& L(x, y, \dot{x}, \dot{y})=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} \dot{y}^{2}-\frac{1}{2} \Omega^{2}\left(x^{2}+y^{2}\right) \\
& \ddot{y}=-\Omega^{2} y
\end{aligned} \quad\left\{\begin{array} { l }
{ \ddot { x } = - \Omega ^ { 2 } y (r) = x \operatorname { c o s } (\Omega t + \varepsilon x) } \\
{ y (r) = y \operatorname { c o s } (\Omega t + \varepsilon _ { 3 }) }
\end{array} ~ \left\{\begin{array}{l}
x(\Omega)
\end{array}\right.\right.
$$

$X, Y, \varepsilon_{x}, \varepsilon_{y}$ constants fixed by the intitial conditions

\Rightarrow closed orbits (ellipse)

Periods

$$
T_{\varphi}=\frac{2 \pi}{\Omega}
$$

$$
T_{r}=\frac{1}{2} T_{\varphi}=\frac{\pi}{\Omega}
$$

Homegeneous sphere (harmonic)

Homegeneous sphere (harmonic)

Homegeneous sphere (harmonic)

Isochrone potential

$$
\phi(r)=-\frac{G M}{b+\sqrt{b^{2}+r^{2}}}
$$

New variable $\quad S=-\frac{G H}{b \phi(r)}=\frac{b+\sqrt{b^{2}+1^{2}}}{b}=1+\sqrt{a^{2} \frac{r}{2}^{2}}$
Henan 1959
solution of $s^{2}-2 s-\frac{r^{2}}{b^{2}}=0$

$$
\Rightarrow \quad \frac{v^{2}}{b^{2}}=s^{2}\left(1-\frac{2}{s}\right)
$$

We can write

$$
\frac{d s}{d t}=\frac{d S}{d r} \frac{d r}{d t} \quad=\quad S(t)=\int_{t_{0}}^{t} \frac{d S}{d r} \frac{d r}{d t} d t
$$

can be integrated

$$
\frac{d s}{d t}=\frac{d s}{d r} \frac{d r}{d t}=\left(1+\frac{r^{2}}{b^{2}}\right)^{-\frac{1}{2}} \frac{r}{b^{2}} \sqrt{2(E-\phi)-\frac{c^{2}}{r^{2}}}
$$

Radial and azimuthal periods

$$
T_{r}=2 \int_{r_{1}}^{r_{2}} \frac{d r}{\sqrt{2(E-\phi)-\frac{L^{2}}{r^{2}}}} \text { and } \Delta \varphi=2 L \int_{r_{1}}^{r_{2}} \frac{d r}{r^{2} \sqrt{2(E-\phi)-\frac{L^{2}}{r^{2}}}}
$$

as $\frac{d r}{d t}=\sqrt{2(E-\phi)-\frac{L^{2}}{r^{2}}} \quad \underbrace{2(E-\phi)-\frac{L^{2}}{r^{2}}}_{\left(r-r_{-}\right)\left(r-r_{2}\right)}=0$ soluliass $r_{1} r_{2}$ in term of s

$$
\left\{\begin{array}{ll}
T_{r}=\frac{e \pi G H}{(-2 E)^{3 / 2}} & \longrightarrow L!
\end{array} \quad \begin{array}{l}
\text { independent of } L \\
\text { (isochrone) }
\end{array}\right.
$$

Important Remartes
Homogeneous sphere

Important Remartes
Homogeneous sphere

Replerian potential

$$
T_{r}=T_{\varphi}
$$

Important Remarks
Homogeneous sphere

Galaxy

$$
\frac{1}{2} T_{\varphi}<T_{r}<T_{\varphi}
$$

$u(\varphi)$

Replerian potential

$$
T_{r}=T_{\varphi}
$$

The End

