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In previous classes we have studied
the no free lunch theorem which

essentiallystates that no learning can suceed
n all tasks there is no universal learner

more concretly though informal
for any learning algorithm Aant

training set S of size m there
there exists a distribution such that

a function kt with ht 0

bed for SNP

ACS f 181 m

somefunction depending
on the size of domaing

set and m



We have also seen that the no
free lunch implies the following stated

informally here corollary corollary 5 Z
er UML

corollary
Let be an infinite domain set and

let It be set of allen mapping
to a particular target set ThenNishop leanable

any algorithm that
chooses its output

from hypotheses in H e.g the ERM

predictor will fail on some
learningtask

Questions How one can escape the hazards
foreseen bythetheorem by making
use of prior knowledge about
an specific learning task



The prior knowledge can be ex

messed by restricting the hypothesis class

Question How one can choose a good
hypothesis class

Ideally one would like

Class including hypothesis with no ema
at all in the PAC sensing or at least
that the a allest error achievable by a

hypothesis from this class in indeed
really small in the agnostic setting

However there is a tradeoff

One cannot simply choose the richest
class the class of all function over

a given domain

Bias complexity tradeoff
or bias variance fly



The bias variance tradeoff is analyzed
through an error decomposition Thisdiscussioncan be made in fairly good
degree of generality see e.g 5.2 in UML

Nevertheless in order to fix
the ideas we will focus on aparticularset

Leastsquaresregression
Biasvariancedecomposition

Suppose we are given a trainingset

S x ̅ g Cim Ym x ̅ End y ER

where each pair is sampled iid from a

distribution D E g
Given a x ̅ outside 5 the goal

is to construct an estimator bs i to



redict the respective label
The prediction error on x ̅ is

quantified by
x ̅
y ks i y

Consider now the expectedpredictionwhich is known to be optimal
for the square loss

ñ i IE y x ̅ fdy yD ylx ̅
Let us now consider the expectation

of the prediction ennor

Eggis Ils x ̅ g

Egis ks i I E ICE y
Exigis ks i E

Egis ICE y



if

ZE.is hsH hEDEEEEYThen

Exyls Ils x ̅ g

EE itEdtfi.ytaialyf
Variance of the predictor Intrinsic noise on

hswooerthe mean.tn Itdoenot

optimal preditor depend on the preditor
the minimum achievabl

We will focus valueof the expected
on this contribution loss

The estimator bs I can be thought
as a parametric model hs x ̅ w̅ where
w̅ represents a set of parameters e.g
the weights of a neural network

Following a Bayesianpoint of view one



would quantify the uncertainty of the
predictor given the dataset S through a

sosterior over w̅

A frequentist perspective on the
other hand involves making a pointestimatebased on 5 The uncertainty of
this estimator is interpreted as follows

Suppose a large number of data sets
of size m drawn from D x ̅ y isavailableFor any given data set S one runs

the learning algorithm and predicts a

function b x ̅ w̅

Different data sets from the ensemble
will provide different estimator functions
and different values of the square lossThe performance of a particular learning
algorithm is then quantified by taking
the average over thin ensemble of
data sets



A remark or criticism on thefrequentistperspective If one has access to
a
very large

number of data sets
why donot obe justmerge them in a huge

single data set in order to obtain
a better predictor

And then quantify the small one
would hope uncertainty through prior
knowledge on w̅ Bayesian perspective

For the illustrative purpose of thisclass we will not stic to possiblecriticismto the frequentist point of view
We will then consider the quantity

Es ks i

add and subtract what is inside the
expectation of the first term the
one representing



E.tk EY
EqsI hsG IEsIhs D IEsths x ̅ I E

Keys ks i EsEbs E

E x ̅ HEINIE Idot
depend on s

21 ks i Is Ibs E IEstn.CH ICED

Taking the expectation over 5
i e Is the cross term goes to zero
a

Esft.sk Et
EsEysI ks i IEsIbs x ̅

E x ̅ Fs ksCx ̅ ICE



Including the intrinsic noisecontributionwe have

Is Eggis Ils x ̅ g

E.EC sthsE
zhf

tEsE IChIE I
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Bias represents the extent to which the
average prediction over all data sets
differs from the desired regression
function



Variance measures the extent to which the
solutions for individual data sets

vary around their averagemeasuresthe sensivity of his E to
a particular data set

There is a trade off between bias
and variance Essentially

Very flexible models have low bias and
high variance

Relatively rigidmodels have high bias
and low variance

think about trying to fit highly
non linear data with a linear
model the variance will be low
but the bias will be high since
the model will make manymistakeson the training data



g

A picture

low variance high variance

0

Also

Ar
rariance
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Model complexity



The model with best prediction
capabilityis then the one that leads to

the best balance between bias and variance

observe that this is similar to
the concept of overfitting and

underfitting
Although the bias variance decom

osition
my provide interesting insightsinto the model complexity from

the frequentist perspective it is oflimitedpractical value as one does not
have an ensemble of data sets

If one had a large number of
independent training sets of a given size
it would be better to combine them into
a single large training set which would
reduce the level of overfitting for a
given model complexity



A step further would be a Bayesian
treatment of linear basis function
models In this particular case the
over fitting associated with maximumlikelihoodcan be avoided by marginalizing
over the model parameter In this
class we will not enter on such de
tais Those interested can check chapter
3 on Bishop's book

Double descent

Reconciling modern machine learning
prac.IEt
n

The picture we painted before can

be represented in practice by the
U shaped curve below

Let It be the function class from



which a predictor kg is chosen

For example I can be the class
of linear classifiers or the class of
b layers neural networks

i generalization
An error

8 overfitting

undeting.pt ngersor
y

capacity of
modelcomplexity

However in real world applications
there are plenty of evidence for the
following picture Belkin et al 2018



he andrometized overparometrized

classic
regime

generalization
BE

training
BE

error

error

capacity offer in

Emodelcomplexity

Understanding systematically under
which conditions and why themodernregime appears is probably the
most important problem in machine

E
It is important to remark that

regardless the catchy name double descent

has been recently popularized since
Belkin et al 2018 this two folddescenthas not been historically overlooked



For a prehistory on double descent
see

Loog et al 2020 PNAS 117 20 10625

Iefpryofdobledecen.tt
and references therein


