## Problem 1. Exercise 3 of Chapter 6

We prove that VC-dimension of $\mathcal{H}_{n-\text { parity }}$ is $n$. First, observe that $\left|\mathcal{H}_{n-\text { parity }}\right|=2^{n}$ and it follows that $\operatorname{VCdim}\left(H_{n-\text { parity }}\right) \leq \log \left(\left|H_{n-\text { parity }}\right|\right)=n$. Also $\operatorname{VCdim}\left(H_{n-\text { parity }}\right) \geq n$ since it shatters the standard basis $\left\{e_{i}\right\}_{i=1}^{n}$, where $e_{i}$ is a length- $n$ vector that has 1 at position $i$ and 0 everywhere else. To see that, observe that $h_{J}\left(e_{j}\right)=1$ iff $i \in J$ and hence for any vector of labels $\left(y_{1}, \ldots, y_{n}\right)$ taking $J=\left\{i \mid y_{i}=1\right\}$ will suffice.

## Problem 2. VC dimension of circles

We will show that the VC dimension of $\mathcal{H}$ is $d=3$.

1. Take three points in $\mathbb{R}^{2}$ located at the corners of an equilateral triangle. It is then clear that a circle can select any single one of these points, but also any pair of points and of course all three points together.
2. We show that $\mathcal{H}$ cannot shatter any set of 4 points. Consider 4 points $A, B, C$ and $D$.

First, assume that one of the points is in the convex hull of the other 3 points. It is then impossible to label these 3 points with 1 while labeling the point in the convex hull with 0 .

If no point is in the convex hull of the three other points then the 4 points form a convex quadrilateral $A B C D$. The line segment $[A C]$ is the first diagonal, and $[B D]$ is the second one. The two diagonals $[A C]$ and $[B D]$ must intersect each other.

We now claim that it is impossible to have circles such that the corresponding functions implement both $(0,1,0,1)$ and $(1,0,1,0)$. This is true since it is impossible to have two circles $C_{1}$ and $C_{2}$ such that

- $C_{1}$ contains only $A$ and $C, C_{2}$ contains only $B$ and $D$, and
- $[A C]$ cuts $[B D]$.

If such $C_{1}$ and $C_{2}$ existed, it would imply that $\left(C_{1} \cup C_{2}\right) \backslash\left(C_{1} \cap C_{2}\right)$ has 4 disjoint parts.
Below, we propose another way to show that the 4 points forming the convex quadrilateral $A B C D$ cannot be shattered by $\mathcal{H}$. This is a proof by contradiction. Suppose that $\mathcal{H}$ shatters the four points. The sum of the four interior angles is $360^{\circ}$. Without loss of generality, we have $\angle A B C+\angle C D A \geq 180^{\circ}$. Because $\mathcal{H}$ shatters the four points, there is a circle $\mathcal{C}$ that contains $A, C$ but not $B, D$. Let $B^{\prime}, D^{\prime}$ be the intersections of the line $(B D)$ with $\mathcal{C}$, and let $A^{\prime}, C^{\prime}$ be the intersections of the line $(A C)$ with $\mathcal{C}$. Clearly $\left[B^{\prime} D^{\prime}\right] \subset[B D]$ and $[A C] \subseteq\left[A^{\prime} C^{\prime}\right]$. Note that

$$
\angle A^{\prime} B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} A^{\prime}>\angle A B C+\angle C D A
$$

Besides, the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is inscribed in the circle $\mathcal{C}$ so:

$$
\angle A^{\prime} B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} A^{\prime}=\angle B^{\prime} C^{\prime} D^{\prime}+\angle D^{\prime} A^{\prime} B^{\prime}=180^{\circ} .
$$

Hence the contradiction: $180^{\circ}=\angle A^{\prime} B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} A^{\prime}>180^{\circ}$.

