Homework 4

CS-526 Learning Theory

Problems from Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David:

1. Exercise 3 of Chapter 6.

Problem 2. VC dimension of circles.

Consider the plane \mathbb{R}^{2}, equipped with the usual Euclidean norm $\|\cdot\|$. We denote as $B(\mathbf{y}, r)=$ $\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}-\mathbf{y}\| \leq r\right\}$ the closed disk of radius r centered in point $\mathbf{y} \in \mathbb{R}^{2}$. Let $\mathcal{H}=\left\{\mathbb{1}_{B(\mathbf{y}, r)}: r \geq 0\right.$ and $\left.\mathbf{y} \in \mathbb{R}^{2}\right\}$ be the hypothesis class that contains the indicator functions of all possible closed disks.

Let d be the VC dimension of \mathcal{H}. Try to figure out first what the value of d might be and then prove the correctness of your guess. For the latter, you need to do the following steps:

1. Show that for any $n \leq d$ there exist n distinct points in the plane shattered by \mathcal{H}.

Hint: You can propose an instance of d points and for each labeling draw the valid circle.
2. Show that no set of n distinct points with $n>d$ can be shattered by \mathcal{H}.

Hint: You should consider two cases: 1) one of the points is in the convex hull of the other points, and 2) none of the points is in the convex hull of the other points. A formal proof might be difficult. It will suffice if you give us a convincing argument.

