Quantum computation: lecture 3

- Deutsch's model of quantum circuits
- Dentsch's problem
- Classical method of resolution
- Quantum algorithm:

Deutsch-Josza's algorithm

Deutsch's model of quantum circuits As already mentioned, every circuit can be represented by a single unitary operation:
and the extraction of information happens Via a measurement in $\left\{\left|x_{1} \ldots x_{n}\right\rangle, x_{1} \ldots x_{n} \in\left\{\left\{_{0}, 1\right\}\right.\right.$, with $\operatorname{prob}\left(\left|x_{1} \ldots x_{n}\right\rangle\right)=\left.1\left\langle x_{1} \ldots x_{n} \mid \psi_{\text {our }}\right\rangle\right|^{2}$

Why to use quantum circuits?

1) To simulate quantum physical systems (not air aim)
2) To solve efficiently classical problems involving a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ = our aim!

3 generic stages

1. Any input of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a sequence of n bits $x_{1} \ldots x_{n}$, which can be encoded into a quantum state $\left|x_{1} \ldots x_{n}\right\rangle$. We will construct superpositions of states $|\psi\rangle=\sum_{x_{1} \cdots z_{n} \in\{0,1\}} d_{x_{1} \ldots x_{n}\left|x_{1} \ldots x_{n}\right\rangle}$ (with $\left.\sum_{x_{1} \cdot x_{n} \in\{0,1\}}\left|\alpha_{x_{1} \ldots x_{n}}\right|^{2}=1\right)$.
2. Unitary operation $U^{(f)}$ performed on $|\psi\rangle$

$$
u^{(f)}|\psi\rangle=\sum_{x_{1} \ldots x_{n} \in\{a+3} \alpha_{x_{1} \ldots x_{n}} u^{(f)}|\psi\rangle
$$ by linearity.

3. Measurement: ait came $=\left|x_{1} \ldots x_{n}\right\rangle$ with probability $\left.\left|\left\langle x_{1} . . x_{n}\right| u^{(f)}\right| \psi\right\rangle\left.\right|^{2}$; should be high (or at least 20) for states $\left|x_{1} \ldots x_{n}\right|$ carespanding to the solution of the pb.

Here are two assumptions: $\binom{$ without loss of }{ generality }

- initial state $=|0,0, \ldots, 0\rangle$
- final measurement performed in the computational basis $\left\{\left|x_{1} \ldots x_{n}\right\rangle, x_{1} \ldots x_{n} \in\{0,1\}\right\}$

These assumptions came sometimes with some additional cost an circuit complexity.

Remark: Circuit complexity $=$ width \times depth

(= number of layers)

Finally, before we proceed to the study of air first quantum algorithm, let us introduce the quantum "orade" gate U_{f} associated to a Boolean function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ (we consider the case $m=1$ here, but) this can be generalized

Obsene first that unless $n=1$ \& f is bijechive, the evaluation of a Boolean function f is in general irreversible.
A reversible way of evaluating a function f is obtained by augmenting the memory with an "ancilla" bit:

$$
\tilde{f}\left(x_{1} \ldots x_{n}, y\right)=\left(x_{1} \ldots x_{n}, y \oplus f\left(x_{1} \ldots x_{n}\right)\right)
$$

Corespanding quantum circuit:

(Note: needs to be constructed for each f)

Up is unitary. Indeed, for all basis elements:

$$
\begin{aligned}
& \left.\left\langle x_{1}^{\prime} \ldots x_{n}^{\prime \prime}\right| \otimes<y^{\prime}\left|U_{f}^{+} U_{f}\right| x_{1} \ldots x_{n}\right\rangle \otimes|y\rangle \\
& \left.=\left(\left\langle x_{1}^{\prime} \ldots x_{n}^{\prime}\right| \otimes\left\langle y^{\prime} \in f\left(x_{1}^{\prime} \cdot x_{n}^{\prime}\right)\right|\right) \cdot\left(\left|x_{1} \ldots x_{n}\right\rangle \otimes \mid y \oplus f\left(x_{1}-x\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\delta_{x_{1} x_{1} \ldots \delta_{x_{n}} x_{n}} \cdot \underbrace{\left\langle y^{\prime} \oplus f\left(x_{1}, x_{n}\right)\right| y \oplus f\left(x_{1} \ldots x_{n}\right)}_{=\delta_{y_{y}} \text { for every } f!}\rangle
\end{aligned}
$$

Dentsch's problem

- We are given a Boolean function $\left.f:\{91\}^{n} \rightarrow\{9\}\right\}$ and an oracle capable of evaluating $f(x)$ for a given x at no cost.
- On top of that, we are informed that \{either f is constant, ie. $f(x)=f(y) \quad \forall x, y \in\{91\}^{n}$ $\left\{\right.$ or f is balanced, ie. $\begin{cases}f(x)=1 & \text { for half } f \text { the } x \text { 's } \\ f(x)=0 & \text { for the other half }\end{cases}$

The aim of the problem is to decide between these two alternatives with the least possible number of calls to the oracle.

Note: We do not know anything a prior about the structure of f; just the above information.

Classical method of resolution
Call the oracle in k different points $x^{(1)} \ldots x^{(k)} \in\{0,1\}^{n}$:

- if $f\left(x^{(4)}\right)=\ldots=f\left(x^{(k)}\right)$, declare " f is constant"
- otherwise, declare " f is balanced"

In the worst case, $k=2^{n-1}+1$ calls to the oracle are needed ($>$ half the total $\#$ of points) in order to obtain a 100% correct answer.

Probabilistic algorithm (still classical)
Fix $k \geqslant 1$ \& draw k iid points $x^{(1)} \ldots x^{(k)} \in\{0,1\}^{n}$ (with possible replacement). Again:

- if $f\left(x^{(k)}\right)=\ldots=f\left(x^{(k)}\right)$, declare" f is constant" - otherwise, declare "f B balanced"

The probability of making an error (which can only happen in the first case) is $\frac{1}{2^{k-1}}$, so can be made as sural as wanted in $O(1)$ calls

Deutsch-Dosza's quantum algarithm

Stage 0

$$
\text { Initial state: } \begin{aligned}
&\left|\varphi_{0}\right\rangle=\underbrace{|0\rangle \otimes \ldots|0\rangle}_{n \text { quits }} \otimes|1\rangle \\
& \begin{array}{c}
\text { "i } \\
\text { ancilla" } \\
\text { quit }
\end{array} \\
&=|0,0, \ldots, 0\rangle \otimes|1\rangle
\end{aligned}
$$

An extra "ancilla" quit is added to the input to allan for computations later.

Stage 1: superposition of states

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =H^{\otimes(n+1)}\left|\psi_{0}\right\rangle \\
& =H|0\rangle \otimes \ldots \otimes H(0) \otimes H|1\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } H|0\rangle=\frac{|0\rangle+|1|}{\sqrt{2}}=\frac{1}{\sqrt{2}} \sum_{x_{1} \in\left\{0_{0}, 3\right.}\left|x_{1}\right\rangle, H|1\rangle=\frac{|0\rangle-(1)}{\sqrt{2}} \\
& \Rightarrow\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}} \sum_{x_{1} \in\left\{\left\{_{0}, 1\right.\right.}\left|x_{1}\right\rangle \otimes \ldots \otimes \frac{1}{\sqrt{2}} \sum_{x_{n} \in\{0,1\}}\left|x_{n}\right\rangle \otimes \frac{|0\rangle-10}{\sqrt{2}} \\
&=\frac{1}{2^{n / 2}} \sum_{x_{1} \cdot x_{n} \in\{0,1}\left|x_{1}, \ldots, x_{n}\right\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Stage 2: passage through the quantum grade Recall $U_{f}\left(\left|x_{1} \ldots x_{n}\right\rangle \otimes|y\rangle\right)=\left|x_{1} \ldots x_{n}\right\rangle \otimes\left|y \in f\left(x_{1} \ldots x_{n}\right)\right\rangle$

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=u_{f}\left|\psi_{1}\right\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{x_{1} \cdots x_{n}} \in\left\{q_{0}\right\} \\
& =\frac{1}{2^{n / 2}} u_{f}\left(\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{|0\rangle-11\rangle}{\sqrt{2}}\right) \\
& \left\lvert\, x_{1} \ldots x_{n} \in\left\{x_{n}\right\rangle \otimes \frac{\left|f\left(x_{1} \ldots x_{1}\right)\right\rangle-\mid \overline{\left.f\left(x_{1} \ldots x_{n}\right)\right\rangle}}{\sqrt{2}}\right.
\end{aligned}
$$

Magic!

$$
\begin{aligned}
&\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{\left|f\left(x_{1} \ldots x_{n}\right)\right\rangle-\left|f\left(x_{1} \ldots x_{n}\right)\right\rangle}{\sqrt{2}} \\
&= \begin{cases}\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{|0\rangle-(1)}{\sqrt{2}} & \text { if } f\left(x_{1} \ldots x_{n}\right) \\
\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{11)-10\rangle}{\sqrt{2}} & \text { if } f\left(x_{1} \ldots x_{n}\right)=1\end{cases} \\
&=\left|x_{1} \ldots x_{n}\right\rangle \otimes(-1)^{f\left(x_{1} \ldots x_{n}\right)} \cdot \frac{|0\rangle-(1\rangle}{\sqrt{2}} \\
&=(-1)^{f\left(x_{1} \ldots x_{n} \mid\right.} \cdot\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{|0\rangle-(1\rangle}{\sqrt{2}}
\end{aligned}
$$

$$
\text { So }\left|\psi_{2}\right\rangle=\frac{1}{2^{n / 2}} \sum_{x_{1} \cdot x_{1} e\left\{q_{0}, 3\right.}(-1)^{f\left(x_{1} \cdot x_{n}\right)}\left|x_{1} \ldots x_{n}\right\rangle \otimes \frac{(0\rangle-n\rangle}{\sqrt{2}}
$$

The action of U_{f} on the ancilla quit, which is in a superposition state, has now been transferred to the first n quits!
Note: From now on, we could forget the ancilla quart...

Stage 3: "analysis"

$$
\begin{aligned}
& \left|\psi_{3}\right\rangle=\left(H^{\otimes n} \otimes I\right)\left|\psi_{2}\right\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{x_{1}-x_{n} \in\{0,1\}}(-1)^{f\left(x_{1}-x_{n}\right)} \underbrace{\left.H^{(8 n} \mid x_{1} \cdots x_{n}\right)}_{*} \otimes \frac{(0)-11)}{\sqrt{2}} \\
& *=H\left|x_{1}\right\rangle \otimes \ldots \otimes H\left|x_{n}\right\rangle
\end{aligned}
$$

Note: $H\left|x_{1}\right\rangle=\frac{|0\rangle+(-1)^{x_{1}}|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}} \sum_{z_{1} \in\left\{\left\{_{1}\right\}\right.}(-1)^{z_{1} \cdot x_{1}}\left|z_{1}\right\rangle$

$$
S_{0} *=\frac{1}{2^{n_{2} / 2}} \sum_{z_{1}-z_{n} \in\{\{,+1\}}(-1)^{z_{1} x_{1}+\ldots+z_{n} x_{n}}\left|z_{1} \ldots z_{n}\right\rangle
$$

Gathering everything together, we obtain:

$$
\begin{aligned}
\left|\psi_{3}\right\rangle= & \frac{1}{2^{n / 2}} \sum_{x_{1} \cdot x_{n} \in\{0,1\}}(-1)^{f\left(x_{1}-x_{n}\right)} \\
& \cdot \frac{1}{2^{n / 2}} \sum_{\left.z_{1}-k_{t} \in q_{0},\right\}^{2}}(-1)^{z_{n} \cdot x_{1}+\cdots+z_{n} \cdot x_{n}}\left|z_{1} \ldots z_{n}\right\rangle \\
& \otimes \frac{10\rangle-(1)}{\sqrt{2}}
\end{aligned}
$$

Reordering the terms:

$$
\begin{aligned}
& :=\alpha_{z_{1} \ldots z_{n}}
\end{aligned}
$$

Stage 4: measurement of the first n quits state $\left|z_{1} \ldots z_{n}\right\rangle$ is observed with prob. $\left|\alpha_{z_{1}} z_{n}\right|^{2}$

Let us consider the particular state $100 \ldots 0\rangle$:

$$
\begin{aligned}
\left|\alpha_{00 \ldots 0}\right|^{2} & =\left|\frac{1}{2^{n}} \sum_{x_{1} \ldots x_{0} \in\{0,1\}}(-1)^{f\left(x_{1} \ldots x_{n}\right)}\right|^{2} \\
& =\left\{\begin{array}{lll}
1 & \text { if } f \text { is carstent } \\
0 & \text { if } & f \text { is balanced }
\end{array}\right.
\end{aligned}
$$

So: If the output state is $100 \ldots 0\rangle, f$ is constant; otherwise, f is balanced. (and this with a single call to the quantion oracle)

Final remarks:

- In an actual quantum computer, there is naze, so the probability of a correct answer is not 100\%.
- The problem is a toy problem, as the full knauledge of f is required to build the gate Up...

