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Abstract 
In trylng to solve multiobjective optimization problems, many traditional methods scalar- 
ize the objective vector into a single objective. In those cases, the obtained solution is 
highly sensitive to the weight vector used in the scalarization process and demands that 
the user have knowledge about the underlying problem. Moreover, in solving multiob- 
jective problems, designers may be interested in a set of Pareto-optimal points, instead 
of a single point. Since genetic algorithms (GAS) work with a population of points, it 
seems natural to use GAS in multiobjective optimization problems to capture a number of 
solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented 
by Schaffer and has been tried to solve a number of multiobjective problems, the algo- 
rithm seems to have bias toward some regions. In this paper, we investigate Goldberg’s 
notion of nondominated sorting in GAS along with a niche and speciation method to find 
multiple Pareto-optimal points simultaneously. T h e  proof-of-principle results obtained 
on three problems used by Schaffer and others suggest that the proposed method can be 
extended to higher dimensional and more difficult multiobjective problems. A number of 
suggestions for extension and application of the algorithm are also discussed. 

Multiobjective optimization, nondominated sorting, ranking selection, and phenotypic 
sharing. 

Keywords 

1. Introduction 

Many real-world design or decision-making problems involve simultaneous optimization of 
multiple objectives. In principle, multiobjective optimization is very different from single- 
objective optimization. In single-objective optimization, one attempts to obtain the best 
design or decision, which is usually the global minimum or the global maximum, depending 
on wiether the optimization problem is one of minimization or maximization. In the case 
of mdtiple objectives, there may not exist one solution that is best (global minimum or 
maximum) with respect to all objectives. In a typical multiobjective optimization problem, 
there exists a set of solutions that are superior to the rest of the solutions in the search space 
when all objectives are considered but are inferior to other solutions in the space in one 
or mare objectives. These solutions are known as Pareto-optimal solutions or nondominated 
solutions (Chankong & Haimes, 1983; Hans, 1988). The rest of the solutions are known as 
dominated solutions. Since none of the solutions in the nondominated set is absolutely better 
than any other, any one of them is an acceptable solution. The  choice of one solution over 
the other requires problem knowledge and a number of problem-related factors. Thus, one 
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solution chosen by a designer may not be acceptable to another designer or in a changed 
environment. Therefore, in multiobjective optimization problems, it may be useful to have 
knowledge about alternative Pareto-optimal solutions. 

One way to solve multiobjective problems is to scalarize the vector of objectives into 
one objective by averagmg the objectives with a weight vector. This process allows a simpler 
optimization algorithm to be used, but the obtained solution largely depends on the weight 
vector used in the scalarization process. Moreover, if available, a decision maker may be 
interested in knowing alternate solutions. Because genetic algorithms (GAS) work with a 
population of points, a number of Pareto-optimal solutions may be captured using GAS. An 
early GA application on multiobjective optimization by Schaffer (1984) opened a new avenue 
of research in this field. Though his algorithm, VEGA, gave encouraging results, it suffered 
from bias toward some Pareto-optimal solutions. A new algorithm, Nondominated Sort- 
ing Genetic Algorithm (NSGA), is presented in this paper based on Goldberg’s suggestion 
(Goldberg 1989). This algorithm eliminates the bias in VEGA and thereby distributes the 
population over the entire Pareto-optimal regions. Although there exist two other imple- 
mentations (Fonesca & Fleming, 1993; Horn, Nafpliotis, & Goldberg, 1994) based on this 
idea, NSGA is different from their working principles and is closer to Goldberg’s suggestion. 

In the remainder of the paper, we briefly describe the difficulties of using three common 
classical methods to solve multiobjective optimization problems. A brief introduction to 
Schaffer’s VEGA and its problems are outlined. Thereafter, the nondominated sorting GA 
is described and applied to three two-objective test problems. Simulation results show that 
NSGA performs better than VEGA on these problems. A number of extensions to this work 
are also suggested. 

2 .  Multiobjective Optimization Problem 

A general multiobjective optimization problem consists of a number of objectives and is 
associated with a number of inequality and equality constraints. Mathematically, the problem 
can be written as follows (Rao, 1991): 

Minimize/Maximize J(x) i =  1,2, . . . ,  N 
Subject to 

&(X) 5 0 j =  1,2, . . . J  
hk(x)=O k =  1,2, . . . ,  K 

The parameter x is a p dimensional vector having p design or decision variables. Solutions 
to a multiobjective optimization problem are mathematically expressed in terms of non- 
dominated or superior points. In a minimization problem, a vector x(l) is partially less than 
another vector x(~), (x(l) < x(’)), when no value of x(2) is less than x(l) and a t  least one value 
of xc2) is strictly greater than x(’). If x(’) is partially less than x(’), we say that the solution 
x(l) dominates x(’) or the solution x(’) is inferior to x(l) (Tamura & Miura, 1979). Any mem- 
ber of such vectors that is not dominated by any other member is said to be nondominated 
or noninferior. Similarly, if the objective is to maximize a function we define a dominated 
point if the corresponding component is not greater than that of a nondominated point. 
The optimal solutions to a multiobjective optimization problem are nondominated solu- 
tions. They are also known as Pareto-optimal solutions. The concept of Pareto-optimality is 
further illustrated in the next section by presenting an example problem. Mathematically, an 
optimization algorithm should be terminated if any one of the Pareto-optimal solutions is 
obtained. But in practice, since there could be a number of Pareto-optimal solutions and the 
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suitability of one solution depends on a number of factors including designer's choice and 
problem environment, finding the entire set of Pareto-optimal solutions may be desired. 
In the following section, we describe a number of classical approaches to the solution of 
multiobjective optimization problems and discuss their difficulties by illustrating a simple 
two-otijective optimization problem. 

3. C1 assical Methods 

A common difficulty with multiobjective optimization is the appearance of an objective confzict 
(Hans, 1988)-none of the feasible solutions allow simultaneous optimal solutions for all 
objectives. In other words, individual optimal solutions of each objective are usually different. 
Thus, :I  mathematically most favorable Pareto-optimum is that solution which offers the least 
objective conflict. Such solutions can be viewed as points in the search space that are optimally 
placed from the individual optimum of each objective. But such solutions may not satisfy a 
decisian maker because he or she may want a solution that satisfies some associated priorities 
of the objectives. To find such points all classical methods scalarize the objective vector into 
one objective. Many classical algorithms for nonlinear vector optimization techniques define 
a substitute problem, reducing the vector optimization to a scalar optimization problem. 
Using such a substitute, a compromise solution is found subjected to specified constraints. 

In the following subsections, three commonly used methods-method of objective 
weighting, method of distance functions, and method of min-max formulation-are dis- 
cussed, 

3.1 Method of Objective Weighting 
This is probably the simplest of all classical techniques. Multiple objective functions are 
combined into one overall objective function, Z ,  as follows: 

z = x21 wlf;(x>, 
where x E X, X represents the feasible regron; 

the weights w f  are fractional numbers (0 5 wf 5 l), and all weights are summed up to 1, or 
Cf.", m, = 1. In this method, the optimal solution is controlled by the weight vector w. It 
is clear from Equation 2 that the preference of an objective can be changed by modifymg 
the co-responding weight. Mathematically, a solution obtained with equal weights to all 
objectives may offer least objective conflict, but as a real-world situation demands a satisfying 
solution, priority must be induced in the formulation. In most cases, each objective is 
first optimized and all objective function values are computed a t  each individual optimum 
solution. Thereafter, depending on the importance of objectives a suitable weight vector 
is chosen and the single-objective problem given in Equation 2 is used to find the desired 
solution. The  only advantage of using this technique is that the emphasis of one objective 
over the other can be controlled, and the obtained solution is a usually a Pareto-optimum 
solution. 

3.2 Method of Distance Functions 
In this method, the scalarization is achieved by using a demand-level vector 7 which has 
to be specified by the decision maker. The single objective function derived from multiple 
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objectives is as follows: 

z = [l c Ijm -ytI 71’”. 1 I Y < c o ,  (3) 

where x E X (the feasible region). Usually a Euclidean metric Y = 2 is chosen, with y 
as individual optima of objectives (Hans, 1988). It is important to note that the solution 
obtained by solving Equation 3 depends on the chosen demand-level vector. Arbitrary 
selection of a demand level may be highly undesirable; a wrong demand level will lead to 
a non-Pareto-optimal solution. As the solution is not guaranteed, the decision maker must 
have a thorough knowledge of individual optima of each objective prior to the selection of 
demand level. In a way this method works as a goal programming technique imposing a goal 
vector, 7 (demand level), on the given objectives. 

This method is similar to the method of objective weighting. The only difference is 
that in this method the goal for each objective function is required to be known whereas in 
the previous method the relative importance of each objective is required. 

3.3 Min-Max Formulation 
This method is different in principle from the above two methods. This method attempts 
to minimize the relative deviations of the single objective functions from the individual 
optimum. That is, it tries to minimize the objective conflict. For a minimization problem, 
the corresponding min-max problem is formulated as follows: 

minimize 3(x) = max [Z,(x)] , j = 1 , 2 , .  . . , N, (4) 
where x E X (the feasible region) and Z,(x) is calculated for nonnegative target optimal value 
f; > o as follows: 

(9 A- f ;  . 
Zj(X) = ~ 

1 = 1 , 2  , . . . ,  N. 
f ;  

This method can yleld the best possible compromise solution when objectives with equal 
priority are required to be optimized. However, the priority of each objective can be varied 
by introducing dimensionless weights in the formulation. This can also be modified as a 
goal-programming technique by introducing a demand-level vector in the formulation. 

3.4 Drawbacks of Classical Methods 
In all the above methods, multiple objectives are combined to form one objective by using 
some knowledge of the problem being solved. The  optimization of the single objective may 
guarantee a Pareto-optimal solution but results in a single-point solution. In real-world 
situations decision makers often need different alternatives in decision making. Moreover, 
if some of the objectives are noisy or have discontinuous variable space these methods may 
not work effectively. Some of these methods are also expensive as they require knowledge 
of the individual optimum prior to vector optimization. The  most profound drawback of 
these algorithms is their sensitivity toward weights or demand levels. The  decision maker 
must have a thorough knowledge of the priority of each objective before forming the single 
objective from a set of objectives. The solutions obtained largely depend on the underlymg 
weight vector or demand level. Thus, for different situations, different weight vectors need 
to be used and the same problem needs to be solved a number of times. We illustrate this 
aspect by considering a simple example. 
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Figure 1. Functionsfil andfiz are plotted versus x .  

Asimple two-objective problem F1 of one variable is considered to illustrate the concept 
of multiple Pareto-optimality. This problem was used for the same purpose by Vincent and 
Grantham (1981) and subsequently by Schaffer (1984). The  problem has two objectives and 
is shown in Figure 1 and Figure 2: 

Minimize = x2 , 
Minimize f i z  = (x  - 2)* 

From the plot showing the performance space, i t  is clear that the Pareto-optimal solutions 
constitnte all x values varying from 0 to 2 .  The solution x = 0 is optimum with respect to 

f i l  but not so good with respect tofi2, and the solution x = 2 is optimum with respect to 
functionfiz and not so good with respect tofi1. Any other point in between is a compromise 
or trade-off to the above two functions and is a Pareto-optimum point. But the solution 
x = 3 ,  for example, is not a Pareto-optimum point since this point is not better than the 
solution x = 2 with respect to either objective. 

Arnong the possible Pareto-optimal points, the decision maker may want to prefer one 
point over the other depending on the situation; before taking any decision, he or she may 
want tcI know the other possible Pareto-optimal solutions. The  traditional methods cannot 
find m iltiple Pareto-optimal solutions simultaneously. For example, with all the above 
methods and with equal priority to both functions having a weight vector (OS,O.S),  and 
demand levels as individual optima, the obtained solution is x* = 1. A weight vector (1 ,O)  
results in a scalarized objective asfil. The solution obtained in thls case is x* = 0, which is 
optimum infi 1 but not so good infi2. Similarly the weight vector (0,l) produces the solution 
x* = 2, which is the minimum point offi2. Any point in the range 0 5 x 5 2 may be a valid 
compromise and can be obtained with a particular choice of a weight vector. Thus, in order 
to obtain a particular solution, the decision maker has to know the corresponding weight 
vector, which is a difficult problem in itself. Another problem with using classical methods 
is that often some objectives may involve uncertainties. If the objective functions are not 
deterministic, the fixation of a weight vector or a demand level may become even more 
difficult. This discussion suggests t h a t  the classical methods of handling multiobjective 
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Figure 2. The performance space of problem F1 is shown. 

optimization problems are inadequate and inconvenient to use. A more realistic method 
would be one that can find multiple Pareto-optimal solutions simultaneously so that decision 
makers may be able to choose the most appropriate solution for the current situation. The 
knowledge of many Pareto-optimal solutions is also useful for later use, particularly when 
the current situation has changed and a new solution is required to be implemented. Since 
genetic algorithms deal with a population of points instead of one point, multiple Pareto- 
optimal solutions can be captured in the population, in a single run. In the following section, 
we describe previous studies and current implementation of GAS to solve multiobjective 
optimization problems. 

4. GA Implementation 

As early as 1967, Rosenberg suggested, but did not simulate, a genetic search to the simulation 
of the genetics and the chemistry of a population of single-celled organisms with multiple 
properties or objectives (Rosenberg, 1967). The first practical algorithm, called Vector 
Evaluated Genetic Algorithm (VEGA), was developed by Schaffer in 1984 (Schaffer, 1984). 
One of the problems with VEGA, as realized by Schaffer himself, is its bias toward some 
Pareto-optimal solutions. Later, Goldberg suggested a nondominated sorting procedure 
to overcome this weakness of VEGA (Goldberg, 1989). Our algorithm, Nondominated 
Sorting Genetic Algorithm (NSGA), is developed based on this idea. There exist at least 
two other studies, different from our algorithm, based on Goldberg’s idea. In the rest of 
this section, we discuss the merits and drawbacks of VEGA and NSGA, and the differences 
between NSGA and the two other recent implementations. 

4.1 Schaffer’s VEGA 
Schaffer modified the simple tripartite genetic algorithm by performing independent se- 
lection cycles according to each objective. He modified Grefenstette’s GENESIS program 
(Schaffer, 1984) by creating a loop around the traditional selection procedure so that the 
selection method is repeated for each individual objective to fill up a portion of the mating 
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pool. Then the entire population is thoroughly shuffled to apply crossover and mutation 
operators. This is performed to achieve the mating of individuals of different subpopulation 
groups,. 

The algorithm worked efficiently for some generations, but in some cases it suffered 
from iis bias toward some individuals or regions. The  independent selection of specialists 
resulted in speciation in the population. The  outcome of this effect is the convergence of 
the en tire population toward the individual optimum regions after a large number of gen- 
erations. Being a decision maker, we may not like to have any bias toward such middling 
individuals; rather, we may want to find as many nondominated points as possible. Schaffer 
tried to minimize this speciation by developing two heuristics-the nondominated selection 
heuris i c  (a wealth redistribution scheme) and the mate selection heuristic (a cross-breeding 
scheme) (Schaffer, 1984). In the nondominated selection heuristic, dominated individuals 
are penalized by subtracting a small fixed penalty from their expected number of copies 
during selection. Then the total penalty for dominated individuals was divided among the 
nondominated individuals and was added to their expected number of copies during selec- 
tion. But this algorithm failed when the population had very few nondominated individuals, 
resulting in a large fitness value for those few nondominated points, eventually leading to 
a high selection pressure. The mate selection heuristic was intended to promote the cross- 
breeding of specialists from different subgroups. This was implemented by selecting an 
individual, as a mate to a randomly selected individual, which has the maximum Euclidean 
distance in the performance space from its mate. But it failed too to prevent the participation 
of poorer individuals in the mate selection because of random selection of the first mate and 
the possibility of a large Euclidean distance between a champion and a mediocre. Schaffer 
conchlded that the random mate selection is far superior to this heuristic. 

One method to minimize speciation is through a nondominated sorting procedure in 
conjunction with a sharing technique, as suggested by Goldberg (1989). Recently Fonesca 
and Fleming (1993) and Horn, Nafpliotis, and Goldberg (1994) implemented that suggestion 
and successfullyapplied it to some problems. These methods are briefly discussed later. First, 
we discuss our algorithm NSGA, which is also based on Goldberg’s suggestions. 

4.2 IVondominated Sorting 
The idea behind the nondominated sorting procedure is that a ranking selection method is 
used to emphasize good points and a niche method is used to maintain stable subpopulations 
of good points. Our algorithm is developed based on this concept. Since the algorithm 
is based on a nondominated sorting procedure, we call this algorithm the Nondominated 
Sorting Genetic Algorithm, NSGA. 

4.2.1 Nondominated Sorting Genetic Algorithm (NSGA) NSGA differs from a sim- 
ple genetic algorithm only in the way the selection operator works. The crossover and 
mutation operators remain as usual. Before the selection is performed, the population is 
ranked on the basis of an individual’s nondomination, described in Section 2. The  nondom- 
inated individuals present in the population are first identified from the current population. 
Then. all these individuals are assumed to constitute the first nondominated front in the 
population and assigned a large dummy fitness value. The same fitness value is assigned 
to give an equal reproductive potential to all these nondominated individuals. To maintain 
diversity in the population, these classified individuals are then shared with their dummy 
fitnes!; values. Sharing methods are discussed elsewhere (Goldberg & Richardson, 1987; 
Deb, 1989; Deb & Goldberg, 1991). Sharing is achieved by performing selection operation 
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using degraded fitness values that are obtained by dividing the original fitness value of an 
individual by a quantity proportional to the number of individuals around it. This causes 
multiple optimal points to co-exist in the population. After sharing, these nondominated 
individuals are ignored temporarily to process the rest of the population in the same way 
to identify individuals for the second nondominated front. These nondominated points are 
then assigned a new dummy fitness value that is kept smaller than the minimum shared 
dummy fitness of the previous front. This process is continued until the entire population 
is classified into several fronts. 

The population is then reproduced according to the dummy fitness values. A stochastic 
remainder proportionate selection is used in this study. Since individuals in the first front 
have the maximum fitness value, they always get more copies than the rest of the population. 
This was intended to search for nondominated regions or Pareto-optimal fronts. This 
results in quick convergence of the population toward nondominated regions, and sharing 
helps to distribute it over this region. By emphasizing nondominated points, NSGA favors 
the schemata representing Pareto-optimal regions. The efficiency of NSGA lies in the way 
multiple objectives are reduced to a dummy fitness function using a nondominated sorting 
procedure. Another aspect of our method is that practically any number of objectives can be 
solved. Both minimization and maximization problems can also be handled by this algorithm. 
The  only place a change is required for the above two cases is the way the nondominated 
points are identified, as discussed in Section 2.  

Figure 3 shows a flow chart of this algorithm. The algorithm is similar to a simple GA 
except for the classification of nondominated fronts and the sharing operation. The  sharing 
in each front is achieved by calculating a sharing function value between two individuals in 
the same front as follows: 

1 - (”)’, oshare ifd# < cTshare; 

otherwise. 
Sh(dg) = (7) 

In the above equation, the parameter dy is the phenotypic distance between two individuals 
i andj  in the current front, and cTshare is the maximum phenotypic distance allowed between 
any two individuals to become members of a niche. Some guidelines to set these parameters 
appear elsewhere (Deb, 1989). A parameter niche count is calculated by adding the above 
sharing function values for all individuals in the current front. Finally, the shared fimess 
value of each individual is calculated by dividing its dummy fimess value by its niche count. 

Fonesca and Fleming (1993) implemented Goldberg’s suggestion in different way. In 
&IS study, the multiobjective optimization GA (MOGA) uses a similar sorting procedure 
presented in this paper. In MOGA, the whole population is checked and all nondominated 
individuals are assigned rank 1. Other individuals are ranked by checking the nondominance 
of them with respect to the rest of the population in the following way. For an individual 
point, the number of points that strictly dominate the point in the population is first found. 
Thereafter, the rank of that individual is assigned to be one more than that number. There- 
fore, at the end of this ranking procedure, there could be a number of points having the same 
rank. The selection procedure then uses these ranks to select or delete blocks of points to 
form the mating pool. As discussed elsewhere (Goldberg & Deb, 1991), this type of blocked 
fitness assignment is likely to produce a large selection pressure that might cause premature 
convergence. MOGA also uses a niche-formation method to distribute the population over 
the Pareto-optimal region. But instead of performing sharing on the parameter values, they 
have used sharing on objective function values. Even though this maintains diversity in the 
objective function values, this may not maintain diversity in the parameter set, a matter of 
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Figure 3. Flow chart of NSGA. 

importance for a decision maker. Moreover, MOGA may not be able to find multiple solu- 
tions in problems where different Pareto-optimal points correspond to the same objective 
function value (Srinivas, 1994). However, the ranking of the individuals according to their 
nondoininance in the population is an important aspect of this work. 

Horn, Nafpliotis, and Goldberg (1994) used Pareto domination tournaments instead of the 
nondoininated sorting and ranlung selection method in solving multiobjective optimization 
probleins. In this method, a comparison set comprising a specific number ( tdom)  of individuals 
is picked a t  random from the population at the beginning of each selection process. Two 
random individuals are picked from the population for selecting a winner in a tournament 
selection according to the following procedure. Both individuals are compared with the 
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members of the comparison set for domination with respect to the objective functions. If 
one of them is nondominated and the other is dominated, then the nondominated point 
is selected. On the other hand, if both are either nondominated or dominated, a niche 
count is found for each individual in the entire population. The niche count is calculated 
by simply counting the number of points in the population within a certain distance (gShare) 
from an individual. The individual with least niche count is selected. The effect of multiple 
objectives is taken into the nondominance calculation. Since this nondominance is computed 
by comparing an individual with a randomly chosen population set of size t h ,  the success 
of this algorithm highly depends on the parameter tdm. If a proper size is not chosen, true 
nondominated (Pareto-optimal) points may not be found. If a small tbB is chosen, this may 
result in a few nondominated points in the population. Instead, if a large tdom is chosen, 
premature convergence may result. This aspect is also observed by the authors. They have 
presented some empirical results with various tdom values. Nevertheless, the concept of niche 
formation among the nondominated points is an important aspect of this work. 

NSGA implements both aspects of Goldberg’s suggestion in a better way. The ranking 
classification is performed according to the nondominance of the individuals in the popula- 
tion, and a distribution of the nondominated points is maintained using a niche formation 
technique. Both aspects cause the distinct nondominated points to be found in the popula- 
tion. 

5. Simulation Results 

In this section, we apply NSGA and VEGA on three test problems, two of which were used 
by Schaffer (1984) and another one was solved by Chankong and Haimes (1983). In all 
simulations, the GA parameters used in the experiments are as follows: 

Maximum generation : 500 

String length (binary code) : 32 
Probability of crossover : 1 .O 
Probability of mutation : 0.0 

Population size : 100 

Mutation probability is kept zero in order to observe the effectiveness of NSGA alone. 
The parameters are held constant across all runs. Unbiased initial population is generated 
randomly, spreading over the entire variable space in consideration. To make the comparison 
fair, exactly the same initial population has been used in VEGA and NSGA. To confirm and 
recheck the solutions, each experiment is repeated five times with different initial populations, 
and the average performance is presented in each case. 

5.1 Problem F1 
This problem is defined in Section 3.  Initial range for the design variable used in simulations 
is (- 10, lo), but the nondominated region is only (0,2). A comparison of population drift 
with NSGA and VEGA is shown in Figures 4 through 11. These figures are drawn in 
performance space, and the gshare parameter used is 0. I. As mentioned earlier, the initial 
population (at generation 0) is exactly the same for both VEGA and NSGA. At generation 10, 
both methods show the convergence of the population toward the nondominated regon. 
At generation 100, the difference in distribution is clear, and at generation 500, V E G k  
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Figure 4. Population a t  generation 0 obtained using NSGA for problem Fl is shown. 
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Figure 5. Population a t  generation 10 obtained using NSGA for problem F1 is shown. 

population converged to only three subregions that are close to individual optima. Figures 4 
through 7 also show the ability of NSGA in distributing the population uniformly and 
maintaining it until generation 500. 

'To study the distribution pattern better, the nondominated search space (0,2) is divided 
into LO equal subregons. Since the population size is 100, we expect to have about 10 
individuals in each subregion. Figures 12 and 13 show plots drawn with the number of 
individuals in each subregion and generation number. In the case of VEGA (Figure 12), 
after some generations, some of the subregions do not have any representation at all. These 
subregions represent middling individuals. Observations based on a number of simulation 
results reveal that at most three subrepons are populated by VEGA. These are the points 
around individual optima. In the case of NSGA (Figure I3), the number ofindividuals in each 
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Figure 6. Population at generation 100 obtained using NSGA for problem Fl is shown. 
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Figure 7. Population at generation 500 obtained using NSGA for problem F1 is shown. 

subregion fluctuated around a value of 10, which is exactly the expected number of points 
in each subregion. It is important to note that none of the subregions have zero individuals. 
Experiments are also carried out by considering a large search space, - 1000 5 x 5 1000, 
compared to the nondominated region, 0 5 x 5 2 ,  so that the initial random population 
of size 100 has no Pareto-optimal points. Figure 14 shows that at generation 20 or so, the 
population is almost filled with nondominated points. The figure also shows that NSGA 
maintains a large proportion of the population at the nondominated region. A similar trend 
is also observed till generation 500. The distribution of points in the nondominated region 
is similar to that in the earlier experiments. 

To quantify this distribution capability of population over nondominated regions, we 
calculate a performance measure, which is discussed in the following subsection. 
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Figure 8. Population at generation 0 obtained using VEGA for problem F1 is shown. 
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Figure 9. PopuIation at generation 10 obtained using VEGA for problem F1 is shown. 

5.1.1 In order to investigate how well NSGA and VEGA have 
distrihuted individuals over the nondominated region, we use the chi-square-like deviation 
form distribution measure used elsewhere (Deb, 1989). 

Performance Measure 

F'erformance measure, L = j g ( a i ; n i ) 2  9 

i= 1 

where q is the number of desired optimal points and the (q + 1)-th subregion is the domi- 
nated regon, ni is actual number of individuals serving i-th subregion (niche) of the non- 
dominated region, +ii is expected number of individuals serving i-th subregion of the nondom- 
inatecl regon, and a: is the variance of individuals serving i-th subregion of the nondominated 
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Figure 10. Population at generation 100 obtained using VEGA for problem F1 is shown. 
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Figure 11. Population at generation 500 obtained using VEGA for problem Fl is shown. 

region. Using probability theory it was estimated elsewhere (Deb, 1989) that 

where P is the population size. Since it is not desirable to have any individual in the dominated 
region ((9 + 1)-th subregion), ng+l = 0. That study also showed that = C%, 0’. If the 
distribution of points is ideal with ni number of points in i-th subregion, the performance 
measure L = 0. Therefore, an algorithm with a good distributing capability is characterized 
by a low deviation measure. 

To analyze the distribution using this measure, the nondominated region is divided into 
the same 10 equal subregions (each having a length of 0.2 units in the variable space). Since a 
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Figurc: 12. Number of individuals in each subregion versus generation for Fl using VEGA is shown. 
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Figur'e 13. Number of individuals in each subregion versus generation for Fl using NSGA is shown. 

population of 100 individuals is used, the expected number of points per subregion (2,) is 10 
with :L variance rf = 9. Therefore, the expected variance of dominated individuals a:, = 90. 
The  actual number of individuals in each subrepon is counted and the deviation measure 
is calculated using Equation 8. Figure 15 shows the deviation measure versus generation 
numtler for VEGA and NSGA applied on F1. Figure 15 shows the average performance of 
five nms with different initial populations while taking the same initial population for VEGA 
and PJSGA. h t ia l ly  both methods start with a high-performance measure because the initial 
population is spread over the entire variable space with fewer individuals in the nondominated 
region. VEGA's increasing measure with generation indicates its poor distributing ability. 
The  initial descent is due to the convergence of population toward the nondominated region. 
At thl: same time, NSGA with rshare = 0.1 (induced number of niches in nondominated region 
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Figure 14. The number of Pareto-optimal points at  each generation is plotted for problem F1. The 
initial population did not have any Pareto-optimal points. 
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Figure 15. Performance measure L for NSGA and VEGA on problem F1 is plotted versus generation 
number. An average of five runs is plotted. 

is lo), fluctuated at a low deviation measure. This is continued until generation 500, which 
is long enough to justify the stability of the population distribution in 10 subregions. This 
shows the ability of NSGA in distributing population over the nondominated region. 

To investigate how sensitive the NSGA results are on CTshare values, a number of CTshare 
values are tried. Figure 16 shows performance of NSGA with different Ushare values. To 
make a fair comparison among these results, the initial population is taken to be the same 
in all cases. There is not much difference in performance with CTshare = 0.1 and cTshare = 0.2. 
This shows that both the values resulted in successful distribution of population. But with 
a considerably high sharing parameter, CTshare = 1 .O, NSGKs performance is poor. A similar 
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Figure 16. Effect ofvarylng ffshare values is shown for problem F1. 

observation can be made in the case of negligible oshare or without sharing. It is important 
here I:O note that although these two cases exhibit increasing deviation measure they are not 
as p o x  as that in VEGA. This is due to the fact that equal reproductive potential (dummy 
fitness) is maintained for all nondominated individuals, thereby minimizing the bias against 
middling points. 

'These results suggest that NSGA is effective in finding multiple Pareto-optimal solu- 
tions and is better than VEGA in that respect. To consolidate our results better, we try using 
NSGA on another multiobjective optimization problem used by Schaffer. 

5.2 Problem F2 
The second problem is given in the following (Schaffer, 1984): 

Minimize f i l  = -x i f x s  1 
= - 2 + x  if1 < x L 3  
= 4 - x  i f 3 < x < 4  
= - 4 + x  i f x > 4  

Minimize f i ~  = (x - 5)2  (9) 

Func,tionsfil andfiz are shown in Figures 17 and 18. The specialty of this problem is its 
disjointed nondominated regions. These can be seen in Figure 18 as regions 1 5 x 5 2 and 
4 5 :c 5 5. Here the net length of this region is 2 units in the variable space. 

The population evolution is shown in Figures 19 through 26. Both algorithms suc- 
cessfully identified disjointed nondominated regons. But the difference in distribution is 
clearly visible at 100-th and SOO-th generations. This result reiterates the ability of NSGA 
in distributing the population. The  nondominated region is divided into 10 subregions to 
analyze the distribution of population. Figures 27 and 28 show the number of individuals 
in e:ich subregion versus generation. In this problem also VEGA failed to sustain some 
of the subregions, whereas NSGA successfully distributed individuals over both disjointed 
Pare to-optimal fronts. The  deviation measure for these algorithms was similar in pattern to 
that of problem F1. 
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Figure 17. Problem F2 is plotted betweenfi, , f i ~ ,  and x.  
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Figure 18. Problem F2 is plotted between51 andfiz. 

5.3 Problem F3 
This problem is used to test NSGAls ability in optimizing multiparameter, multiobjective 
problems as well as handling constrained search spaces: 

2 Minimize 51 = (21 - 2 )  +(x2 - 1)2  + 2 ,  and 
Minimize f 3 2  = 9x1 - (x2 - 
Subject to 

4+4-225 5 0, 
X1 - 3x2 + 10 5 0. 

238 

(10) 
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Figure 19. Population at generation 0 obtained using NSGA for problem F2 is shown. 

f21 

Figure 20. Population at  generation 10 obtained using NSGA for problem F2 is shown. 

The unconstrained version of the above problem was solved by Chankong and Haimes 
(1983) using a goal vector and weights for objectives. But here we make the problem more 
difficult by constraining the search space. 

The first objective function, f 3 1 ,  is a smooth unimodal function that has a minimum 
at point x3, = (2, l)T. The second objective function, f32, decreases monotonically with 
decreasing x1 or with increasing absolute value of x2. A contour plot of these two functions 
is shown in Figure 29. The contours of the first function are concentric circleswith the center 
at ( 2 ,  I )T .  This function value increases with increasing diameter of the circle. The second 
function (parallel parabolas) constantly decreases along the line x2 = 1 toward decreasing 
x1. Careful observation reveals that the tangentialpoints of circles and parabolas dominate all 
other points; this occurs because any such tangential point is better in the second objective 
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Population a t  generation 100 obtained using NSGA for problem F2 is shown. 
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Figure 22. Population at generation 500 obtained using NSGA for problem F2 is shown. 

than all other points belonging to the same circle (samef31 value). These tangential points 
are Pareto-optimal points. Therefore, Pareto-optimal points may be found by equating the 
slopes (first differentials) of contour curves a t  common points: 

or. 

240 

(x1 - 2 )  9 
(xz - 1) - 2 ( q  - 1 ) ’  
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Figure 23. Population at  generation 0 obtained using VEGA for problem F2 is shown. 
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Figure 24. Population at  generation 10 obtained using VEGA for ' problem F2 is shown. 

Assuming x2 # 1, and solving yelds, 

x1 = - 2 . 5 .  

Since the second objective, f , z ,  is monotonically decreasing, the unconstrained Pareto- 
optimal region, represented by the straight line x1 = -2.5, is unbounded. Because of 
the constraints, the above unconstrained Pareto-optimal region is now shortened. The 
constraints make the upper half of the circular region feasible, thereby malung the Pareto- 
optimal region to lie in the region x1 = -2.5, 2.5  < x2 < 14.79, as shown in Figure 29. 

NSGA is applied to this problem considering the variable space - 20 < X I ,  x2 5 20. A 
string length of 30 (1 5-bit string for each variable) is considered. The other parameters such 
as population size, crossover probability, etc. are kept the same as in the previous experiments. 
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Figure 25. Population a t  generation 100 obtained using VEGA for problem F2 is shown. 

Figure 26. 

f21 

Population a t  generation 500 obtained using VEGA for problem F2 is shown. 

This problem is transformed into an unconstrained optimization problem using an exterior 
penalty function (Rao, 1991). Both the objectives,hl and-&, were penalized if any point lies 
in the infeasible region. The  population movement, in the case of NSGA with Cshare = 9.0 
(for inducing 10 niches in the variable space, calculated using suggestions given elsewhere 
(Deb, 1989)), is shown in Figures 30 through 33 .  

It can be observed that at generation zero less than 20% of the population was feasible 
and by generation 10 the entire population converges to the feasible regon. At generation 
20, the population starts to move toward the feasible Pareto-optimal line x1 = -2 .5 .  Later 
on, sharing helps to distribute these nondominated points over the entire Pareto-optimal 
region. Ths can be observed at generation 100. Our experiments reveal that this distribution 
is maintained even a t  higher generations, observed up to 500. 
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Figure 27. Number of individuals in each subregion versus generation for F2 using VEGA is shown. 
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Figure 28. Number of individuals in each subregion versus generation for F2 using NSGA is shown. 

Figure 34 shows the population distribution at generation 100 obtained using VEGA for 
problem F3. The speciation in the population can be seen in this figure. This experiment 
has been carried out with the same initial population (at generation 0) as in the case of 
NSGA (Figure 30). The population movement is similar to that of NSGA during the initial 
generations up to generation number 20. At generation 100, as shown in Figure 34, the 
population drifted toward three subregions. Our experiments, observed up to generation 
500, revealed that the entire population converged toward two subrepons that are nearer to 
the individual optima of the objectives. This experiment reiterates the distributive ability of 
NSGA in handling complicated multiobjective problems. 
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Figure 29. Contour map of problem F3.  
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Figure 30. Population a t  generation 0 obtained using NSGA for problem F3 is shown. 

6. Extensions 

A number of extensions of this study can be pursued: 

1. Even though two objectives are used in problems presented in thls paper, more 
objectives can be handled with NSGA. Moreover, the objectives need not be all of the 
minimization type; some of them could be of maximization type. In both situations, 
the definition of nondominated points will change, but the NSGA algorithm can still 
be used. 
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x ,  
Figure 31. Population at generation 10 obtained using NSGA for problem F3 is shown. 

0 

XI 
Figure 32. Population a t  generation 20 obtained using NSGA for problem F3 is shown. 

2.  The  other two studies (Fonesca & Fleming, 1993; Horn et al., 1994) stress the 
importance of sufficient population size and suitable gshare value to yield proper 
distribution of population. Although the problems presented in this paper used a 
population size of 100, experiments with a smaller population size of 50 on problems 
F1 and F2 have also shown similar performance. The  population size requirement 
may be more for a greater number of objectives, but how this size requirement would 
increase is a matter for interesting future research. 

3. It has been found elsewhere (Goldberg & Deb, 1991) that tournament selection puts a 
more controlled selection pressure and has a faster convergence characteristic than the 
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Figure 33. Population at generation 100 obtained using NSGA for problem F3 is shown. 

Figure 34. Population a t  generation 100 obtained using VEGA for problem F3 is shown. 

proportionate selection method used in this study. The  niching techmque suggested 
by Oei, Goldberg, and Chang (1992) can be tried with tournament selection to 
replace sharing and proportionate selection in NSGA for more controlled and, 
hopefully, faster solutions. 
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7. Conclusions 

Even though there exists a number of classical multiobjective optimization techniques, they 
require some a priori problem information. Because genetic algorithms use a population of 
points, they may be able to find multiple Pareto-optimal solutions simultaneously. Schaffer’s 
Vector Evaluated Genetic Algorithm (VEGA) was one effort in this direction. In this paper, 
a nondominated sorting genetic algorithm, suggested by Goldberg, is described and used to 
solve three multiobjective optimization problems. T h e  proof-of-principle simulation results 
have shown that this algorithm (called NSGA) can maintain stable and uniform reproductive 
potential across nondominated individuals, which is a serious drawback of VEGA. T h e  results 
suggest that NSGA can be successfully used to find multiple Pareto-optimal solutions, the 
knowledge of which could be very useful to designers or decision makers. A number of 
suggestions for immediate extension and application of NSGA to several multiobjective 
optimization problems have also been discussed. 
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