EPFL

4th year physics 06.03.2024

Exercises week 3
Spring semester 2024

Astrophysics IV : Stellar and galactic dynamics Exercises

Problem 1:

In a first part, estimate the relaxation time of an ultra-faint dwarf galaxy (UFD) containing only about 1'000 stars and being as compact as $50\,\mathrm{pc}$. In a second part, assume that the typical velocity of the stars is about $4\,\mathrm{km/s}$ and thus, that the stellar component must be embedded in a massive dark matter halo. How is the relaxation time changed from the first to the second case?

Hint: Assume that the mass of the stars is about one solar mass.

Problem 2:

Demonstrate that the Poisson equation can be derived from a variational principle and interpret the meaning of the extremalisation performed.

Problem 3:

In practice, for spherical systems, is often useful to derive, for example the density $\rho(r)$ knowing the gravitational field $g(r) = -\frac{\mathrm{d}\Phi}{\mathrm{d}r}$, or the potential $\Phi(r)$ knowing the cumulative mass M(r). Using the relations presented during the lectures, express successively $\rho(r)$, $\Phi(r)$, M(r) and $\frac{\mathrm{d}\Phi}{\mathrm{d}r}$ as a function of respectively $\rho(r)$, $\Phi(r)$, M(r) and $\frac{\mathrm{d}\Phi}{\mathrm{d}r}$ as given in the following table: