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Anneaux et Corps Exercices

Solutions 3

Exercice 1. 1. Wrong, for example, one can see that for the inclusion Z ↪→ Q, the image of the

ideal (2) ⊆ Z is not an ideal in Q.

2. Correct according to Lemma 1.4.30.

Exercice 2.

Assume that ξ−1
p (I) is principal, meaning that ξ−1

p (I) = (f) for some f ∈ Z[t]. Since I is by

de�nition an additive group, it contains 0, and therefore p ∈ ξ−1
p (I) = Z[t] · f. It follows that

p = g · f for some g ∈ Z[t]. We recall that by Exercise 5 on Sheet 2, deg(f · g) = deg(f) + deg(g).
It follows that

0 = deg(p) = deg(f · g) = deg(f) + deg(g).

Therefore, deg(f) = 0 and deg(g) = 0 and so f, g ∈ Z. But then p = g · f. Since p is prime, it

follows that either f = ±1 or f = ±p. If f = ±1, then I = Fp[t]. If f = ±p, then I = {0}. Those
are contradictions to the assumption and therefore, ξ−1

p (I) is not principal.

Exercice 3. 1. Identité de Bézout. Let d be the biggest common divisor of m and n. De�ne
the set E := {cm + dn

∣∣c, d ∈ Z}. Let e = am + bn be the smallest non-zero positive integer

in E. Dividing n by e with rest, we get n = qe+ r for some q ∈ Z, 0 ≤ r < e. Then

r = n− qe = n− q(am+ bn) = (−qa)︸ ︷︷ ︸
∈Z

m+ (1− qb)︸ ︷︷ ︸
∈Z

n ∈ E.

But since r < e, it follows that r = 0, and therefore e
∣∣n. Similarly, we show that e

∣∣m. It
follows that e is a common divisor of m and n. It remains to show that e is indeed the biggest

common divisor. Since d
∣∣m and d

∣∣n, it holds that d∣∣(am+ bn) = e, and hence e = d.

2. We have

� (m)(n) = (mn) by Remarque 1.4.28.

� (m) + (n) = (m,n) by Remarque 1.4.28. According to Bézout, this is equal to (d).

� (m) ∩ (n) = (ppmc{m,n}). The inclusion ⊇ holds due the de�nition, which states that

(m) ∩ (n) contains elements that are simultaneously in (m) and (n), which means that

they are simultaneously multiples of (m) and of (n). For the other inclusion, let k be an

element contained in (m) ∩ (n). That means that k is a multiple of both (m) and (n).
Let p be the least common multiple of m and n. As in the �rst part of this exercise, we

can divide k by p with rest, from which it follows that k is a multiple of p, and therefore

k ∈ (ppmc{m,n}).

Exercice 4.

Let ιA : Z → A be the unique ring homomorphism with source Z. By de�nition, car(A) = n, where
ker(ιA) = (n).



1. Consider the composition ιB : Z ιA−→ A
f−→ B. Since the kernel of the �rst homomorphism

is contained in the kernel of the composition, it holds that (n) = ker(ιA) ⊆ ker(ιB) =: (m),
with m being car(B). Therefore, m

∣∣n, and so car(B)
∣∣ car(A).

In general, car(B) ̸= car(A), as one can see when considering the reductions modulo 2,

f : Z/6Z → Z/2Z.

2. If f is injective, then its kernel is trivial, meaning that ker(ιA) = ker(f ◦ ιA) = ker(ιB).

3. In order to show that F is a ring homomorphism, we show that ∀a, b ∈ A,

� F (1) = 1p = 1,

� F (ab) = (ab)p = apbp = F (a)F (b),

� lastly, F (a+ b) = (a+ b)p = ap + bp. This holds due to the fact that A is commutative,

and the fact that the binomial coe�cients that would appear for expressions of the form

aibj , i, j ̸= 0, i, j ̸= p are all divisible by p, and hence they are zero in A.

4. Denote by g the unique homomorphism g : Z → Z[i]/(i−2). The characteristic of Z[i]/(i−2)
is k ∈ Z, where (k) = ker(g). The kernel is ker(g) = {n ∈ Z

∣∣∃a, b ∈ Z s.t n = (a+ ib)(i− 2)}.
Let n ∈ Z be contained in the kernel. Then, with a, b ∈ Z,

n = (a+ ib)(i− 2) = (−2a− b) + i(a− 2b).

It follows that n = −5b, and so n ∈ (5). Conversely, for m ∈ (5), we have m = 5α for some

α ∈ Z and g(m) = g(5α) = g(5)g(α) = 0. This shows that ker(g) = (5).

Exercice 5.

Let A = Z/250Z.

1. The zero divisors are the divisors of 250 and their multiples, stictly bigger than 1. The divisors

of 250 (1 excluded) are 2, 5, 10, 25, 50, 125 and 250.

� For the divisor 2, we get 124 multiples, up to the last multiple 248.

� For the divisor 5, we get 49 multiples, up to the last multiple 245. However, as half of
these multiples are even, they have already been counted as multiples of 2. We get 25
new zero divisors.

� The remaining divisors 10, 25, 50 and 125 are multiples of 5 and have therefore already

been counted into those zero divisors.

Summing up, we get 124 + 25 = 149 zero divisors.

The remaining 100 elements are all invertible. Such an element x ∈ A is prime to 250, meaning

that x and 250 don't have any common divisors other than 1. With Bézout's identity there

are two a, b ∈ Z such that 1 = ax+ b · 250. With this, ax ≡ 1 mod 250.

2. By the correspondence described in Propositon 1.4.36, the ideals of A = Z/250Z correspond

to ideals of Z which contain (250). Ideals of Z are principal, of the form (n). With (250) ⊆
(n) we get that n

∣∣250 and so n = 1, 2, 5, 10, 25, 50, 125 and 250. Additionally, if the ideal

in A contains 50, then the ideals in Z need to contain the preimage of the class [50]. In
particular, they need to contain 50. Hence n is reduced to 1, 2, 5, 10, 25, 50. The ideals in A
are A, ([2]), ([5]), ([10]), ([25]) and ([50]).



Exercice 6.

Soit A le sous-anneau de M2(Z) des matrices de la forme

(
a c
0 b

)
où a, b, c ∈ Z. Montrer que le

sous-ensemble K des matrices pour lesquelles 5 | a et 11 | b est un idéal bilatère et construire un

isomorphisme (en deux temps) A/K → Z/5× Z/11.
One veri�es easily that the subset K is an additive subgroup, and that the product of a matrix

in A and a matrix in K is a matrix in K, with multiplication in both directions. Therefore, K is a

two-sided ideal.

To construct the isomorphism, we de�ne the ideal I as

I :=
{(

0 c
0 0

) ∣∣∣c ∈ Z
}
.

Again, verifying that this is an ideal is easy. Since I ⊂ K, we may apply the Proposition 1.4.39

(Quotient en deux temps). Let ξ : A → A/I. Then,

A/K ∼= (A/I)/ξ(K).

We have that

ξ(K) =
{(

a 0
0 b

) ∣∣∣a, b ∈ Z, 5 | a, 11 | b
}
.

Furthermore, we note that A/I can be described as classes of matrices with representatives of

the form

(
a 0
0 b

)
with a, b ∈ Z. This is isomorphic to Z× Z via the obvious isomorphism

ϕ :
A/I → Z× Z[(
a 0
0 b

)]
7→ (a, b)

.

With ϕ, ξ(K) is sent to (5) × (11), and therefore, (A/I)/ξ(K) ∼= (Z × Z)/((5) × (11)) ∼= Z/(5) ×
Z/(11).

Exercice 7. 1. We use Proposition 1.2.2. applied to the identity on R[y]. The proposition then

states that there exists a unique ring homomorphism ev0 : R[y][x] → R[y] s.t. idR[y] =
ι ◦ ev0, where ι denotes the inclusion ι : R[y] → R[y][x]. ev0 acts by sending a polynomial

p(x, y) ∈ R[y][x] ∼= R[x, y] to p(0, y) ∈ R[y]. One easily veri�es that ev0 is surjective, as the

identity on R[y] is surjective. The kernel of ev0 consists of all polynomials p(x, y) ∈ R[x, y]
for which p(0, y) = 0. These are exactly those polynomials that are multiples of x, and hence

ker(ev0) = (x). By the isomorphism theorem it follows that R[y] ∼= R[x, y]/(x).

2. As above, consider the two evaluations

ev0,x :=
R[x, y] → R[y]
p(x, y) 7→ p(0, y)

, ev0,y :=
R[x, y] → R[x]
p(x, y) 7→ p(x, 0)

.

It holds that ker(ev0,y) = (y). Using the universal property of products, Proposition 1.4.45,

we get a unique homomorphism

ϕ :
R[x, y] → R[x]×R[y]
p(x, y) 7→ (p(x, 0), p(0, y))

.

The kernel of ϕ is equal to ker(ev0,x) ∩ ker(ev0,y) = (x) ∩ (y) = (xy). Indeed, the inclusion

(xy) ⊂ (x) ∩ (y)

holds immediately � as for the other inclusion, say xf = yg for f, g ∈ R[x, y] i.e an element

of (x) ∩ (y). Note that ev0,y(xf) = xf(0, y) = 0. As x is not a divisor of zero in R[x], we
conclude that f(0, y) = 0. Therefore f ∈ (y), showing that xf ∈ (xy).



3. We note that for a polynomial p(x, y) ∈ R[x, y] the constant term of ev0,x(p) and of ev0,y(p) is
the same. This suggests that the image of ϕ is as stated. To show that every such element is in

the image of ϕ, we let p(x) ∈ R[x] and q(y) ∈ R[y]. Consider the pair (a+xp(x), a+ yq(y)) ∈
R[x]×R[y] with a ∈ R. Then

ϕ(a+ xp(x) + yq(y)) = (a+ xp(x), a+ yq(y)).

Therefore, the pair (a+ xpx(x), a+ ypy(y)) is contained in the image of ϕ. We conclude with

the isomorphism theorem.


