EPFL

Rappel: ingrédients de base des algorithmes

Données

- Entrées
- Sorties
- Variables internes

Instructions

- Affectations
- Structures de contrôle
 - Branchements conditionnels (tests)
 - Itérations (boucles)
 - Boucles conditionnelles

Tout que _--

-> Pair i about de 1 à n

Paur i allout de 1 à n (répéter ---)

 $i \leftarrow 1$ Tant que $i \leq n$ (rèpéter ---)

Information, Calcul et Communication

Sous-algorithmes

 École polytechnique fédérale de Lausanne

EPFL Sous-algorithmes

Un problème récurrent : comment préparer ses valises en famille?

EPFL Sous-algorithmes

Solution 1

Algorithme centralisé : une personne se charge de tout: pas idéal...

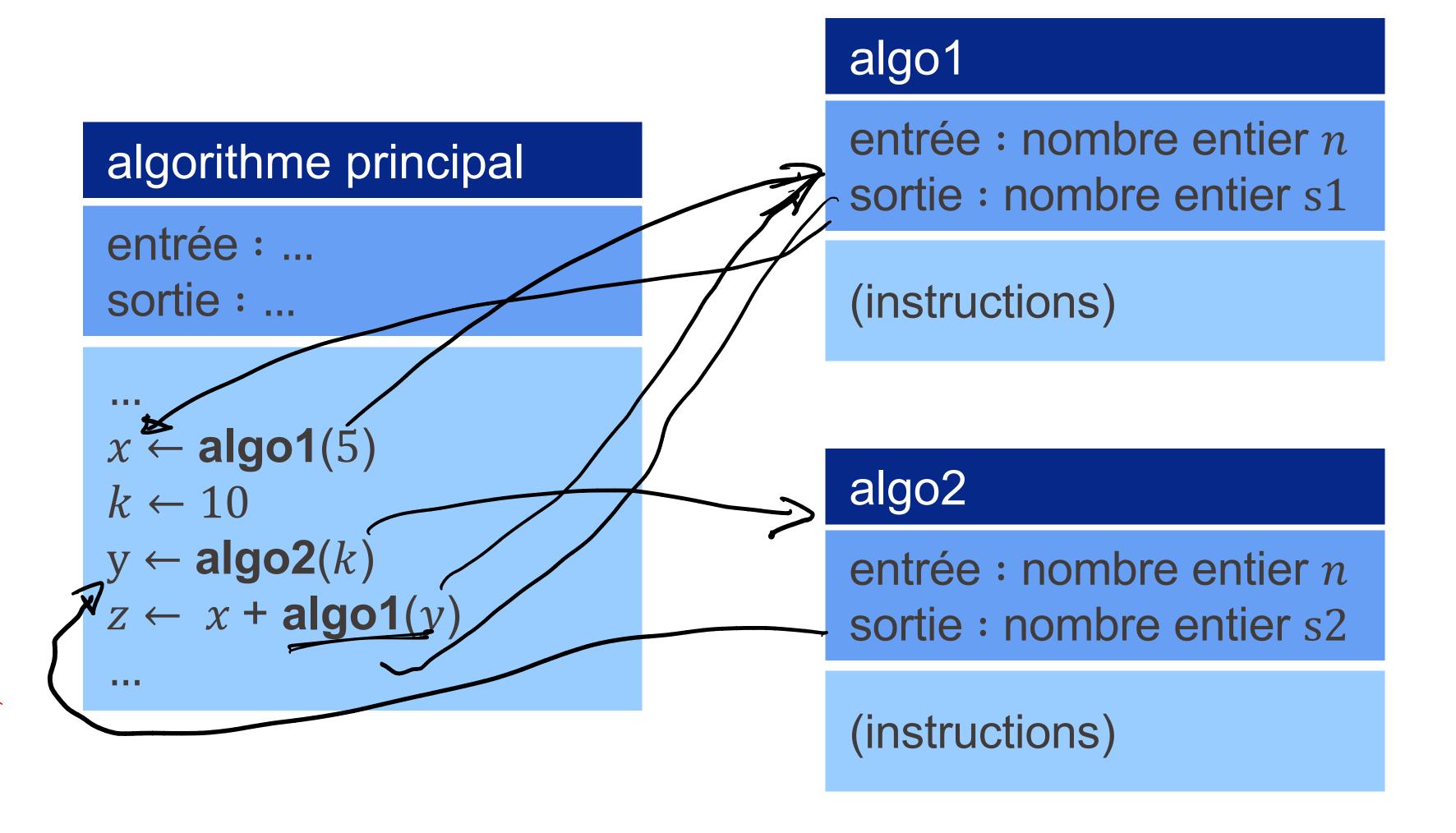
Solution 2

Chacun prépare sa propre valise: beaucoup mieux!

Et encore mieux: chaque personne prépare séparément :

- ses habits
- sa trousse de toilette
- ses livres
- sa tenue de plongée ...

EPFL Un exemple en pseudocode



Information, Calcul et Communication

EPFL Illustration du principe avec le tri d'une liste

Tri d'une liste de nombres

Comment trier une liste de nombres ? (ou un jeu de cartes, ou encore une liste de noms, ou ...)

Il existe de nombreuses façons de faire, plus ou moins efficaces. Nous allons en voir une: le tri par insertion, qui permet de bien illustrer le principe de l'utilisation de sous-algorithmes.

Tri d'une liste?

Ex: L = (10, 5,4,5)

-> L'= (3,5,10,14)?

EPFL Tri par insertion: algorithme principal

tri par insertion

entrée : liste de nombres L, taille de la liste n

sortie : liste L triée dans l'ordre croissant

Pour i allant de 2 à n:

Si L(i) < L(i - 1), alors:

 $L \leftarrow \mathsf{ins\acute{e}rer}(L, i)$

Sortir : L

De l'ordre de n² operations à effectuer ici!

EPFL Tri par insertion: sous-algorithme 1

insérer

entrée : liste de nombres L, nombre entier positif i

sortie : liste L avec l'élément L(i) bien placé

 $j \leftarrow i$ Tant que j > 1 & L(j) < L(j-1): $L \leftarrow permuter(L, j, j - 1)$ $j \leftarrow j - 1$ Sortir : L

$$L = (3, 10, 12, 7)$$

$$L = (3, 10, 12, 7)$$

$$L = (12, 10, 12, 7)$$

$$L = (13) ? eui$$

EPFL Tri par insertion: sous-algorithme 1

L = (3, 12, 10, 7)(?)

insérer

entrée : liste de nombres L, nombre entier positif i

sortie : liste L avec l'élément L(i) bien placé

```
j \leftarrow i

Tant que j > 1 \& L(j) < L(j-1):

L \leftarrow \mathbf{permuter}(L, j, j-1) \implies \mathbf{permuter}(L(j)) \& L(j-1)

j \leftarrow j-1

Sortir: L
```

Remarque importante:

Les éléments L(1) ... L(i-1) doivent être déjà triés pour que ce sousalgorithme fonctionne correctement. Heureusement, c'est le cas ici!

EPFL Tri par insertion: sous-algorithme 2

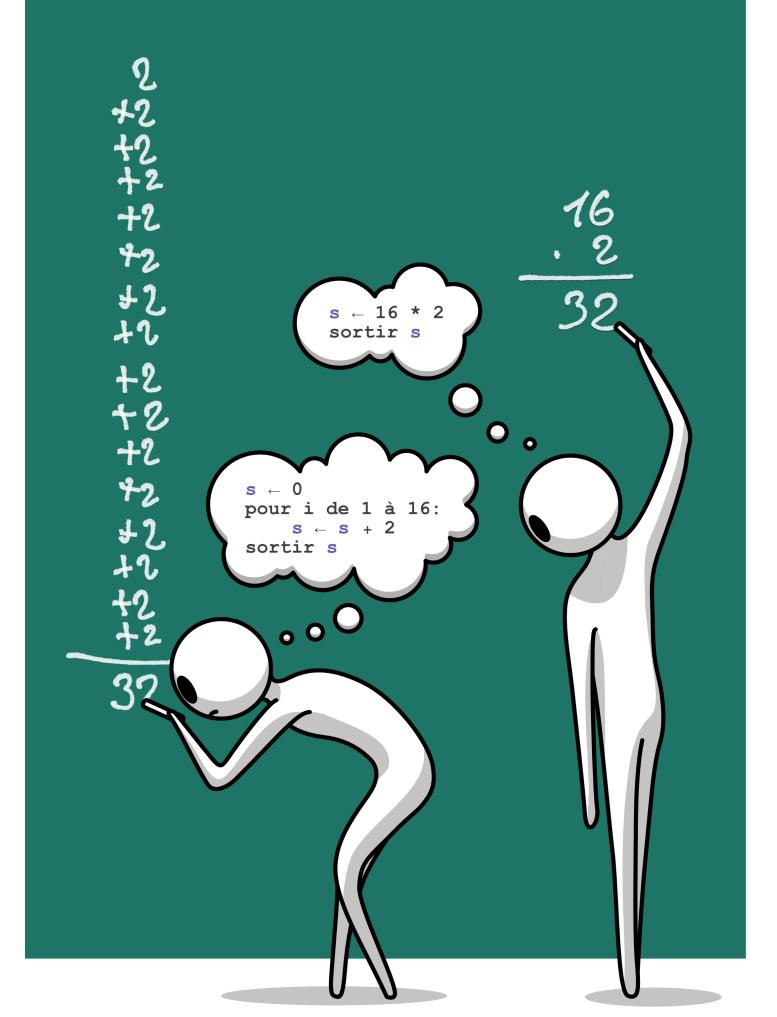
entrée=(L(j)=2, L(k)=3)

permuter*

entrée : liste de nombres entiers L, nombres entiers positifs j, k sortie : Liste L avec les éléments L(j) et L(k) permutés

$$temp \leftarrow L(j)$$
 $temp \leftarrow 2$
 $L(j) \leftarrow L(k)$ $L(j) \leftarrow 3$
 $L(k) \leftarrow temp$ $L(k) \leftarrow 2$
Sortir: L

Sample =
$$(3, 2)$$



Information, Calcul et Communication

Algorithmes : complexité temporelle

EPFL Complexité temporelle d'un algorithme

La complexité temporelle d'un algorithme est son temps d'exécution.

Définition plus précise :

La complexité temporelle d'un algorithme est le nombre d'opérations élémentaires effectuées au cours de son exécution, dans le pire des cas.

- opération élémentaire = addition, soustraction, multiplication ou comparaison de deux bits
- pire des cas: le temps d'exécution peut en effet dépendre des données d'entrée.

Approximation pour ce cours :

complexité temporelle = nombre d'instructions lues par l'algorithme au cours de son exécution (dans le pire des cas)

EPFL Exemples

Algorithme 1

Tant que 1 > 0 :
Afficher "bonjour"

Complexité temporelle infinie!

EPFL Exemples

Algorithme 1

Tant que 1 > 0:
Afficher "bonjour"

Algorithme 2

entrée : L liste de nombres, n taille de la liste

sortie : m moyenne des n nombres de la liste

 $\int_{N} \left\{ \begin{array}{l} m \leftarrow 0 \\ \text{Pour } i \text{ allant de 1 à } n : \\ m \leftarrow m + L(i) \\ \text{Sortir : } m/n \end{array} \right.$

me-o ie-1 Trent que ien me-m+Lai ie-ie1 Sortr m/n

 $\frac{32}{3n}$

311+3 gérahais

EPFL Exemples

Algorithme 3 (version légèrement modifiée de l'algorithme «Tous différents?»)

entrée : L liste de nombres, n taille de la liste

sortie : oui ou non

Pour i allant de 1 à n-1:

Pour j allant de i + 1 à n:

Si L(i) = L(j), alors:

Sortir: non

Sortir: oui

Camp, remparelle
$$\nu$$
 nombre de poures d'éléments dans $\{1...n\} = \frac{n(n-1)}{2}$

EPFL Notation $\Theta(\cdot)$: introduction

- En général, on évalue la complexité temporelle d'un algorithme en fonction d'un paramètre lié à la **taille des données d'entrée** (le paramètre *n* dans les deux exemples précédents).
- Pourquoi tant s'intéresser à cette complexité temporelle ? Voici un exemple concret:

Supposons qu'un algorithme prenne une minute pour s'exécuter avec des données d'entrée de taille n=1'000. On aimerait savoir en combien de temps (au pire) s'exécutera ce même algorithme avec des données d'entrée de taille n=10'000.

Si on peut caractériser le nombre d'opérations effectuées par l'algorithme en fonction de n (comme par exemple pour l'algorithme 3 qui effectue $\frac{n(n-1)}{2} + 1$ opérations lors de son exécution, dans le pire des cas), alors on peut répondre à la question ci-dessus.

EPFL Notation $\Theta(\cdot)$: définition

■ Dans de nombreuses applications, on a affaire à des données d'entrée de grande taille.

 Dans ce cas, on aimerait obtenir des ordres de grandeur plutôt que de devoir faire des calculs détaillés.

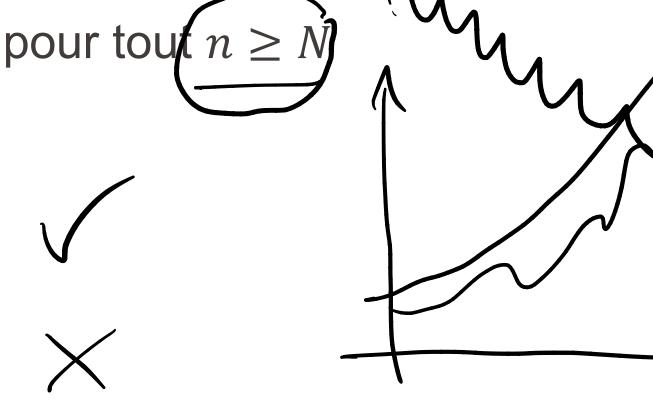
Définition

Soient $f,g:\mathbb{N}\to\mathbb{R}_+$ deux fonctions non-négatives On dit que "f(n) est un **grand theta** de g(n)" et on écrit " $f(n)=\Theta(g(n))$ " s'il existe $0<\mathcal{C}_1<\mathcal{C}_2<\infty$ et $N\geq 1$ tels que

$$C_1 g(n) \le f(n) \le C_2 g(n)$$
 pour tout $n \ge N$

Ex:
$$f(n) = 2n k g(n) = n$$

Ctrex: $f(n) = n^2 k g(n) = n$



EPFL Notation $\Theta(\cdot)$: définition

- Dans de nombreuses applications, on a affaire à des données d'entrée de grande taille.
- Dans ce cas, on aimerait obtenir des ordres de grandeur plutôt que de devoir faire des calculs détaillés.

Définition

Soient $f,g:\mathbb{N}\to\mathbb{R}_+$ deux fonctions non-négatives On dit que "f(n) est un **grand theta** de g(n)" et on écrit " $f(n)=\Theta(g(n))$ " s'il existe $0<\mathcal{C}_1<\mathcal{C}_2<\infty$ et $N\geq 1$ tels que

$$C_1 g(n) \le f(n) \le C_2 g(n)$$
 pour tout $n \ge N$

Deux exemples:

• Les fonctions f(n) = n + 2 et f(n) = 3n + 3 sont toutes deux des $\Theta(n)$ [cf. algorithme 2]

La fonction
$$f(n) = \frac{n(n-1)}{2} + 1$$
 est un $\Theta(n^2)$ [cf. algorithme 3]
$$= \frac{n^2}{2} - \frac{n^2}{2} + 4 \qquad = \frac{n^2}{2}$$

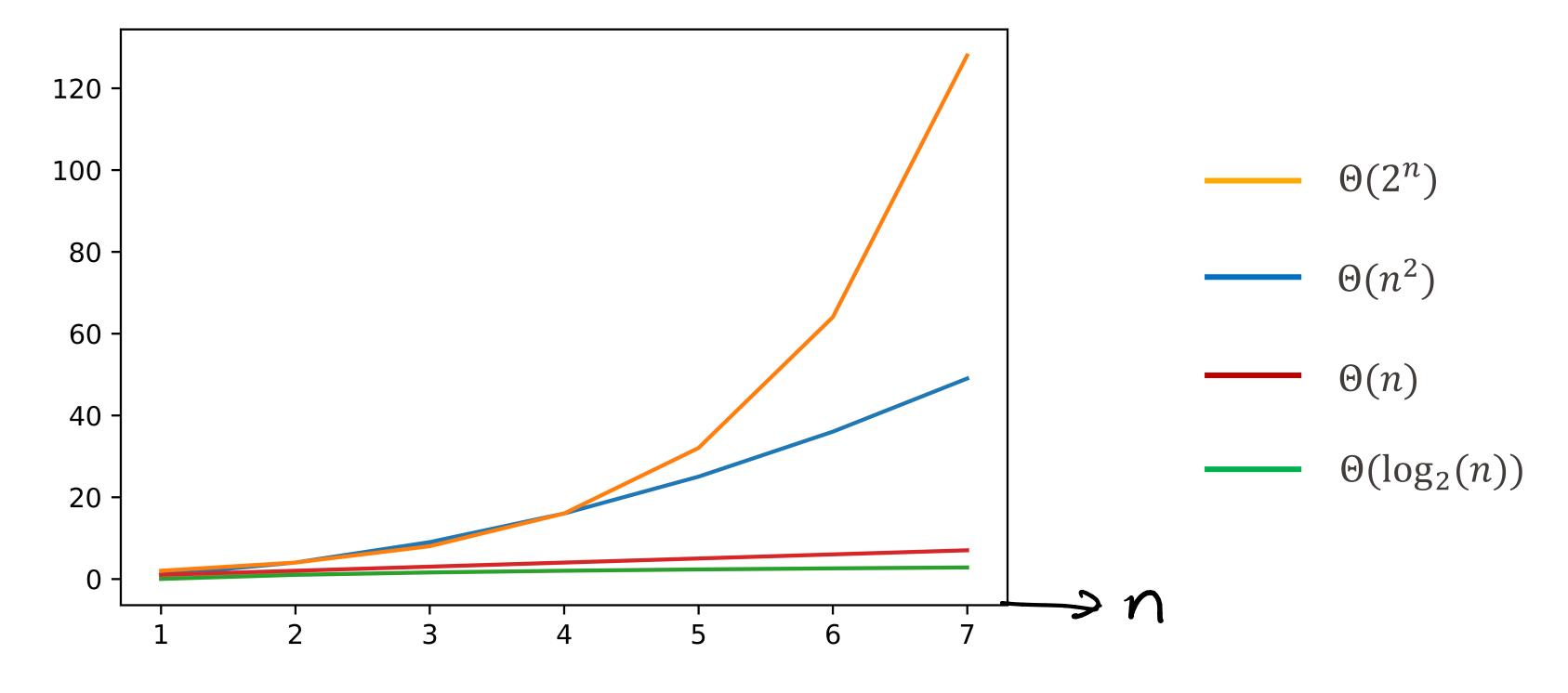
EPFL Notation $\Theta(\cdot)$: application

Revenons à notre exemple :

Supposons qu'un algorithme prenne une minute pour s'exécuter avec des données d'entrée de taille n=1'000. On aimerait savoir en combien de temps (au pire) s'exécutera ce même algorithme avec des données d'entrée de taille n=10'000.

• Si la complexité temporelle de cet algorithme est un $\Theta(n)$, alors son temps d'exécution avec n=10'000 en entrée vaudra (approximativement) 10 minutes.

• Si sa complexité temporelle est un $\Theta(n^2)$, alors alors son temps d'exécution avec n=10'000 en entrée vaudra (approximativement) $10 \times 10 = 100$ minutes = 1 heure 40.



$$log_2(n) \approx 10$$
, $n = 1000$, $n^2 = 10000000$, $2^n \sim 10^{300}$

$$n = 1000$$

EPFL Illustration

Calcul du nombre de paires d'éléments dans l'ensemble $\{1, \dots, n\}$

Pour calculer ce nombre, il existe plusieurs façons de faire :

- Utilisation de deux boucles imbriquées \rightarrow complexité $\Theta(n^2)$
- Utilisation d'une seule boucle \rightarrow complexité $\Theta(n)$
- Utilisation de la formule mathématique
 → complexité Θ(1)

$$s \leftarrow 0$$

Pour i allant de $1 \grave{a} n - 1$:
Pour j allant de $i + 1 \grave{a} n$:
 $s \leftarrow s + 1$
Sortir: s

$$s \leftarrow 0$$

Pour i allant de 1 à $n-1$:
 $s \leftarrow s + n - i$
Sortir: s

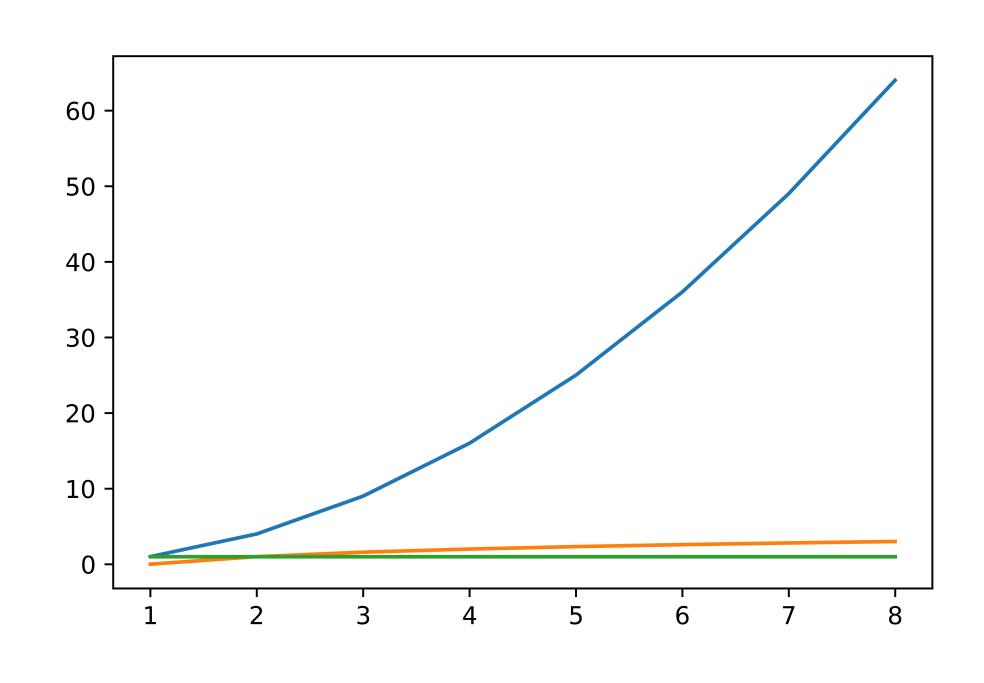
$$s \leftarrow \frac{n(n-1)}{2}$$
Sortir: s

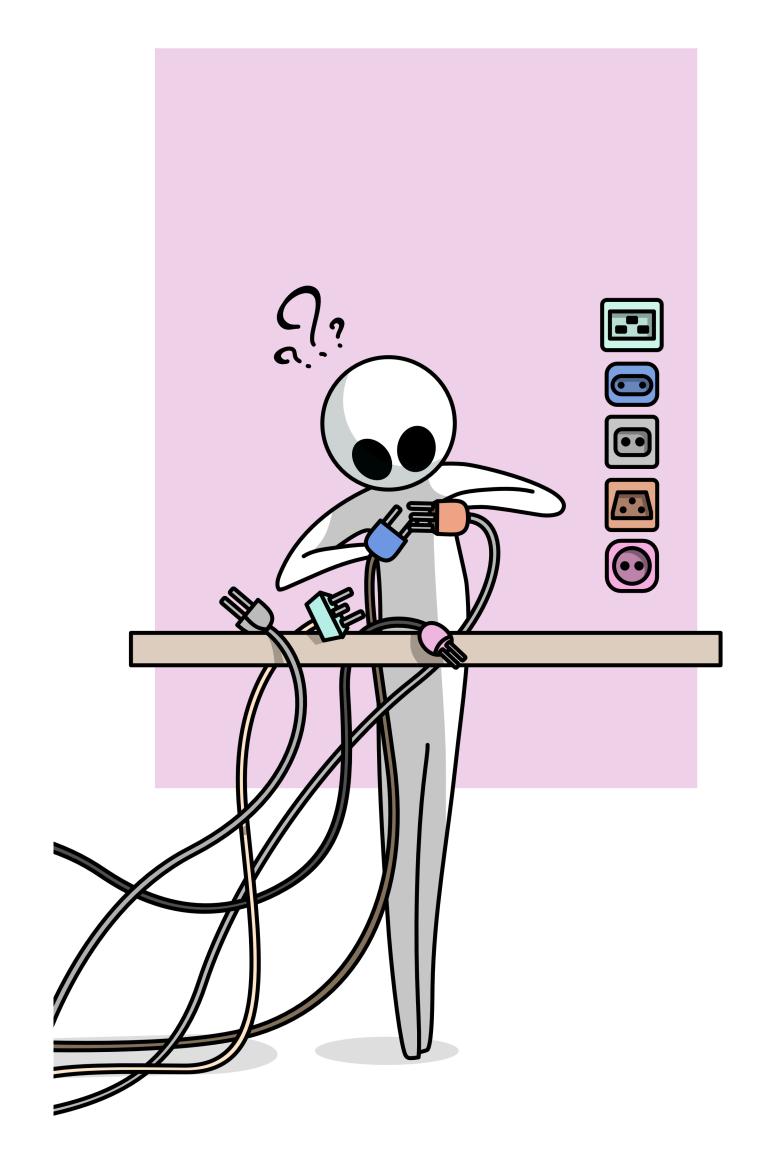
EPFL Illustration

Calcul du nombre de paires d'éléments dans l'ensemble $\{1, \dots, n\}$

Pour calculer ce nombre, il existe plusieurs façons de faire :

- Utilisation de deux boucles imbriquées \rightarrow complexité $\Theta(n^2)$
- Utilisation d'une seule boucle \rightarrow complexité $\Theta(n)$
- Utilisation de la formule mathématique
 → complexité Θ(1)





Information, Calcul et Communication

Complexité temporelle : un (autre) exemple concret

EPFL Deux font la paire

Question: Parmi toutes les fiches et prises ci-dessus, y a-t-il une paire qui s'adapte l'une à l'autre?

Information, Calcul et Communication

EPFL Réécriture du problème avec des nombres entiers

En remplaçant les fiches et les prises par des nombres entiers positifs et négatifs, respectivement, la question précédente se transforme en :

Etant donnée une liste L de n nombres entiers positifs et négatifs, existe-t-il $i, j \in \{1, ..., n\}$ tels que i < j et L(i) + L(j) = 0?

Exemple: Si L = (-15, -12, -3, -1, +5, +17, +23), alors la réponse est non.

Note: Vu que nous avons affaire ici à des nombres entiers, nous allons supposer de plus que la liste L en entrée est ordonnée.

EPFL Première méthode de résolution

Etant donnée une liste L de n nombres entiers positifs et négatifs, existe-t-il $i, j \in \{1, ..., n\}$ tels que i < j et L(i) + L(j) = 0?

Deux font la paire

entrée : liste ordonnée L de nombres entiers

sortie : valeur binaire oui / non

```
s \leftarrow non

Pour i allant de 1 à n-1:

Pour j allant de i+1 à n:

Si L(i) + L(j) = 0, alors : s \leftarrow oui

Sortir : s
```

EPFL Complexité temporelle de cet algorithme: $\Theta(n^2)$

Les deux boucles imbriquées explorent toutes les paires possibles d'indices i < j dans $\{1 \dots n\}$, qui sont au nombre de

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$$

donc la complexité temporelle de l'algorithme est $\Theta(n^2)$.

Question: Peut-on faire mieux?

EPFL

Deuxième méthode de résolution

Deux font la paire

entrée : liste ordonnée L de nombres entiers

sortie : valeur binaire oui / non

Pour i allant de 1 à n-1:

Pour j allant de i+1 à n:

Si L(i) + L(j) = 0, alors : Sortir : ouiSortir : non

 \rightarrow Complexité temporelle $\Theta(n^2)$ également : dans le pire des cas, l'algorithme doit parcourir toutes les paires (i,j) avant de sortir.

Remarque:

Aucun des deux algorithmes précédents n'exploite l'ordre de la liste L.

EPFL Troisième méthode de résolution

Deux font la paire

entrée : liste ordonnée L de nombres entiers

sortie : valeur binaire oui / non

```
i \leftarrow 1

j \leftarrow n

Tant que i < j:

Si L(i) + L(j) = 0, alors : Sortir : oui

Si L(i) + L(j) < 0, alors : i \leftarrow i + 1

Si L(i) + L(j) > 0, alors : j \leftarrow j - 1

Sortir : non
```

Information, Calcul et Communication

EPFL Conclusion

 Pour un problème donné, il existe souvent plusieurs algorithmes de résolution différents.

En général, des données d'entrée structurées permettent une résolution plus efficace du problème.