ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Learning Theory
Spring 2023
Assignment date: June 19th, 2023, 15:15
Due date: June 19th, 2023, 18:15

CS 526 - Final Exam - room INJ 218

There are 4 problems: 3 "regular" problems and one that consists of 4 short questions. Use scratch paper if needed to figure out the solution. Write your final answer in the indicated space. This exam is open-book (lecture notes, exercises, course materials) but no electronic devices allowed. Good luck!

Name: \qquad
Section: \qquad
Sciper No.: \qquad

Problem 1	$/ 16$
Problem 2	$/ 16$
Problem 3	$/ 16$
Problem 4	$/ 12$
Total	$/ 60$

Problem 1. Consistent Learning (16 pts)

Let \mathcal{X} be a domain set and \mathcal{Y} be a set of labels. Let \mathcal{F} be a set of possible labelling functions, $\mathcal{F} \subset\{f \mid f: \mathcal{X} \rightarrow \mathcal{Y}\}$.

Definition: We say that A is a consistent learner for \mathcal{F} using the hypothesis class \mathcal{H}, if for any labeling function $f \in \mathcal{F}$ and for all $m \geq 1$, when given as input the set of samples $S=$ $\left\{\left(x_{1}, f\left(x_{1}\right)\right), \cdots,\left(x_{m}, f\left(x_{m}\right)\right)\right\}$ where $x_{i} \in \mathcal{X}, A$ outputs $h_{S} \in \mathcal{H}$ such that $h_{S}\left(x_{i}\right)=f\left(x_{i}\right)$ for $1 \leq i \leq m$.

Remark: Question 1 is about the proof of a statement and question 2 is an application. You can answer question 2 even if you do not prove the statement question 1.

1. (8 pts) Let \mathcal{F} be a labelling class and \mathcal{H} a finite hypothesis class which are not necessarily equal. We suppose there exists a consistent learner A for \mathcal{F} using \mathcal{H}. Prove the following statement:

For all $f \in \mathcal{F}$ and all distributions \mathcal{D} over \mathcal{X} and all $\epsilon, \delta \in(0,1)$, if A is given a set of samples $S=\left\{\left(x_{i}, f\left(x_{i}\right)\right)\right\}_{i=1}^{m}$ with $x_{i} \sim \mathcal{D}$ and size m such that

$$
m \geq \frac{1}{\epsilon}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)
$$

then with probability at least $1-\delta$ the learner A outputs a hypothesis $h_{S} \in \mathcal{H}$ that satisfies

$$
P_{x \sim \mathcal{D}}\left[h_{S}(x) \neq f(x)\right] \leq \epsilon
$$

Hint: Fix the labeling function. Then, define a notion of "bad" hypotheses, and use union bound.

Now, we consider the problem of learning conjunctions. Let $\mathcal{X}=\{0,1\}^{n}$. Let $\mathcal{F}=$ CONJUNCTIONS $_{n}$ denote the class of conjunctions over the n boolean variables z_{1}, \ldots, z_{n}. A literal is either a boolean variable z_{i} or its negation \bar{z}_{i}. A conjunction is simply an "and" (\wedge) of literals. An example conjunction φ with $n=10$ is

$$
\varphi\left(z_{1}, \ldots, z_{10}\right)=z_{1} \wedge \bar{z}_{3} \wedge \bar{z}_{8} \wedge z_{9}
$$

We want to learn a target conjunction $\phi^{*} \in$ CONJUNCTIONS $_{n}$ from a sampling set $S=$ $\left\{\left(x_{i}, \phi^{*}\left(x_{i}\right)\right)\right\}_{i=1}^{m}$, and the hypothesis class is $\mathcal{H}=$ CONJUNCTIONS $_{n}$. So here each sample x_{i} is a binary vector $\left(x_{i, 1}, \cdots, x_{i, 10}\right)$ assigned to $\left(z_{1}, \ldots, z_{10}\right)$. The corresponding label $\phi^{*}\left(x_{i}\right)$ equals 0 or 1 .
2. (8 pts) Consider the following algorithm for learning conjunctions:

1. Set $h=z_{1} \wedge \bar{z}_{1} \wedge z_{2} \wedge \bar{z}_{2} \wedge \cdots \wedge z_{n} \wedge \bar{z}_{n}$.
2. For $i=1, \ldots, m$:
3. If $\phi^{*}\left(x_{i}\right)==1$ (Ignore samples with 0 label)
4. For $j=1, \ldots, n$:
5. If $x_{i, j}==0: \quad\left(j\right.$-th bit of $\left.x_{i}\right)$
6. Drop z_{j} from h.
7. Else:
8. \quad Drop \bar{z}_{j} from h.
9. Output h.
(a) Apply the algorithm to the sample set $S=\{(0001,0),(0111,0),(1001,1),(1011,0)\}$, and determine the output. Check that the algorithm has outputed a consistent hypothesis.
(b) Suppose now that the algorithm is indeed a consistent learner. Given (ϵ, δ) how many samples are needed to have:

$$
P_{x \sim \mathcal{D}}\left[h_{S}(x) \neq f(x)\right] \leq \epsilon \quad \text { with probability at least } 1-\delta
$$

for any distribution \mathcal{D}, and set S ?

Solution to Problem 1:

1. Fix the labeling function f and a distribution \mathcal{D} on \mathcal{X}. Call a hypothesis $h \in \mathcal{H}$ "bad" if $P_{x \sim \mathcal{D}}[h(x) \neq f(x)]>\epsilon$. Let E_{h} be the event that m independent samples in S drawn from \mathcal{D} are all consistent with h, i.e. $h\left(x_{i}\right)=f\left(x_{i}\right)$, for $1 \leq i \leq m$. Then, if h is bad, $P\left[E_{h}\right] \leq(1-\epsilon)^{m} \leq e^{-\epsilon m}$.
Consider the event

$$
E=\bigcup_{\operatorname{bad} h \in \mathcal{H}} E_{h}
$$

Then, by union bound, we have:

$$
P[E] \leq \sum_{\operatorname{bad} h \in \mathcal{H}} P\left[E_{h}\right] \leq|\mathcal{H}| e^{-\epsilon m}
$$

If $m \geq \frac{1}{\epsilon}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)$, then this probability is upper bounded by δ.
Thus, whenever m is larger than the bound, the probability that a consistent learner returns a bad hypothesis $h_{S} \in E$ is at most δ. Which means that the event $P\left(h_{S}(x) \neq\right.$ $f(x))>\epsilon$ has probability at most δ. Thus the event $P\left(h_{S}(x) \neq f(x)\right)>\epsilon$ has probability at least $1-\delta$.
2. (a) The output is $h=z_{1} \wedge \bar{z}_{2} \wedge \bar{z}_{3} \wedge z_{4}$. Consistency is checked by plugging all four $x_{i} \in S$ and checking that $h\left(x_{i}\right)=\phi^{*}\left(x_{i}\right)$.
(b) We have that $|\mathcal{H}|=3^{n}$, because any variable can appear as z_{i} or \bar{z}_{i}, or do not appear in a conjunction. Then using part 1, we should have

$$
m \geq \frac{1}{\epsilon}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)=\frac{1}{\epsilon}\left(n \log 3+\log \frac{1}{\delta}\right)
$$

Problem 2. Gradient descent(16 pts)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex Lipshitz continuous differentiable function with Lipshitz constant $\rho>0$. Let S be a real symmetric strictly positive-definite $d \times d$ matrix with smallest eigenvalue $\lambda_{\min }>0$. We consider a gradient descent iteration for $t \geq 1$ and step size $\eta>0$:

$$
\begin{equation*}
x^{t+1}=x^{t}-\eta S^{-1} \nabla f\left(x^{t}\right) \tag{1}
\end{equation*}
$$

with initial condition $x^{1}=0$. Further, define $x^{*}=\operatorname{argmin}_{\|x\| \in B(0, R)} f(x)$, where $B(0, R)$ is the ball of radius R.

1. (4 pts) The update equation (1) is in the form of an Euler forward scheme. Write down the associated backward Euler scheme.
2. (6 pts) Consider the following iterations (assume the argmin exists and is unique)

$$
x^{t+1}=\operatorname{argmin}_{x}\left\{f(x)+\frac{1}{2 \eta}\left(x-x^{t}\right)^{T} S\left(x-x^{t}\right)\right\}
$$

Is the quantity in the bracket simply convex or strictly convex? Show that this iteration is equivalent to one of the two Euler schemes.
3. (6 pts) Show that if we choose the step size $\eta=\frac{R \sqrt{\lambda_{\max } \lambda_{\min }}}{\rho \sqrt{T}}$ after T iterations we have

$$
f\left(\frac{1}{T} \sum_{t=1}^{T} x^{t}\right)-f\left(x^{*}\right) \leq \frac{\rho R}{\sqrt{T}} \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}
$$

Hint: recall that in class we proved this statement when $S=I$ the identity matrix. Here you can use an eigenvalue decomposition $S^{-1}=U^{T} \Lambda^{-1} U$. The following is also useful:

$$
\left\langle\underline{\nabla} f\left(x^{t}\right), x^{t}-x^{*}\right\rangle=\left\langle U \nabla f\left(x^{t}\right), U x^{t}-U x^{*}\right\rangle=\sum_{k=1}^{d}(U \nabla f)_{k}\left(x^{t}\right)\left(U x^{t}-U x^{*}\right)_{k}
$$

Justify why these steps can be used.

Solution to Problem 2:

1. The backward Euler scheme is

$$
x^{t+1}=x^{t}+S^{-1} \nabla f\left(x^{t+1}\right)
$$

2. The first term f is convex. The second term is strictly convex because S is positive definite (with $\lambda_{\text {min }}>0$). Thus the sum is strictly convex.

Since f is differentiable we can differentiate the gradient of the quantity in the bracket in order to find the argmin:

$$
\nabla f(x)+\eta^{-1} S\left(x-x^{t}\right)=0
$$

which implies the backward Euler scheme:

$$
x^{t+1}=x^{t}-\eta S^{-1} \nabla f\left(x^{t+1}\right)
$$

3. Let $S^{-1}=U^{T} \Lambda^{-1} U$ with U an orthogonal matrix, and $\Lambda=\operatorname{Diag}\left(\lambda_{1} \cdots \lambda_{d}\right)$. With $\bar{x}=\frac{1}{T} \sum_{t=1}^{T} x^{t}$, we have

$$
\begin{aligned}
& f(\bar{x})-f\left(x^{*}\right) \leqslant \frac{1}{T} \sum_{t=1}^{T}\left(f\left(x^{t}\right)-f\left(x^{*}\right)\right) \quad \text { convexity } \\
& \leqslant \frac{1}{T} \sum_{t=1}^{T}\left\langle\nabla f\left(x^{t}\right), x^{t}-x^{*}\right\rangle \quad \text { convexity } \\
&=\frac{1}{T} \sum_{t=1}^{T}\left\langle U \nabla f\left(x^{t}\right), U x^{t}-U x^{*}\right\rangle \\
&=\sum_{k=1}^{d} \frac{1}{T} \sum_{t=1}^{T}(U \nabla f)_{k}\left(x^{t}\right)\left(U\left(x^{t}-x^{*}\right)\right)_{k} \\
&=\sum_{k=1}^{d} \frac{\lambda_{k}}{\eta T} \sum_{t=1}^{T}\left(\frac{\eta}{\lambda_{k}}\right)(U \nabla f)_{k}\left(x^{t}\right)\left(U\left(x^{t}-x^{*}\right)\right)_{k} \\
&=\sum_{k=1}^{d} \frac{\lambda_{k}}{2 \eta T} \sum_{t=1}^{T}\left\{-\left(\left(U\left(x^{t}-x^{*}\right)\right)_{k}-\frac{\eta}{\lambda_{k}}(U \nabla f)_{k}\left(x^{t}\right)\right)^{2}+\left(U\left(x^{t}-x^{*}\right)\right)_{k}^{2}+\frac{\eta^{2}}{\lambda_{k}^{2}}\left(U \nabla_{f}\right)_{k}\left(x^{t}\right)^{2}\right\}
\end{aligned}
$$

Now, from the backward equation we have:

$$
\begin{aligned}
& x^{t+1}=x^{t}-\eta U^{T} \Lambda^{-1} U \nabla\left(x^{t}\right) \\
& \Rightarrow U x^{t+1}=U x^{t}-\eta \Lambda^{-1} U \nabla f\left(x^{t}\right) \\
& \left(U x^{t+1}\right)_{k}=\left(U x^{t}\right)_{k}-\frac{\eta}{\lambda_{k}}(U \nabla f)_{k}\left(x^{t}\right)
\end{aligned}
$$

From which we get

$$
\begin{aligned}
f(\bar{x})-f\left(x^{*}\right) & \leq \sum_{k=1}^{d} \frac{\lambda_{k}}{2 \eta T} \sum_{t=1}^{T}\left\{-\left(U\left(x^{t+1}-x^{*}\right)\right)_{k}^{2}+\left(U\left(x^{t}-x^{*}\right)\right)_{k}^{2}+\frac{\eta^{2}}{\lambda_{k}^{2}}\left(U \nabla_{f}\right)_{k}\left(x^{t}\right)^{2}\right\} \\
& =\sum_{k=1}^{d} \frac{\lambda_{k}}{2 \eta T}\left[\left(U\left(x^{1}-x^{*}\right)\right)_{k}^{2}-\left(U\left(x^{T+1}-x^{*}\right)\right)_{k}^{2}\right]+\sum_{k=1}^{d} \frac{\lambda_{k}}{2 \eta T} \sum_{t=1}^{T} \frac{\eta^{2}}{\lambda_{k}^{2}}(U \nabla f)_{k}\left(x^{t}\right)^{2} \\
& \leq \frac{\lambda_{\max }}{2 \eta T} \sum_{k=1}^{d}\left(U\left(x^{1}-x^{*}\right)\right)_{k}^{2}+\frac{\eta}{2 T \lambda_{\min }} \sum_{t=1}^{T}\|U \nabla f\|^{2} \\
& =\frac{\lambda_{\max }}{2 \eta T}\left\|U\left(x^{1}-x^{*}\right)\right\|^{2}+\frac{\eta}{2 \lambda_{\min }}\|\nabla f\|^{2} \\
& \leq \frac{\lambda_{\max }}{2 \eta T} R^{2}+\frac{\eta}{2 \lambda_{\min }} \rho^{2}
\end{aligned}
$$

where we used that $x^{1}=0$ and $\left\|x^{*}\right\|^{2} \leq R^{2}$ (by assumption) in the last inequality.
Set

$$
\eta^{2}=\frac{\lambda_{\max } \lambda_{\min } R^{2}}{\rho^{2} T}
$$

Then, we find:

$$
\begin{aligned}
f(\bar{x})-f\left(x^{*}\right) & \leq \frac{\lambda_{\max } R^{2} \rho \sqrt{T}}{2 \sqrt{\lambda_{\max } \lambda_{\min }} R T}+\frac{\sqrt{\lambda_{\max } \lambda_{\min }} R}{\rho \sqrt{T}} \frac{\rho^{2}}{2 \lambda_{\min }} \\
& =\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \frac{\rho R}{2 \sqrt{T}}+\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \frac{\rho R}{2 \sqrt{T}} \\
& =\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \frac{\rho R}{\sqrt{T}}
\end{aligned}
$$

Problem 3. Tensor decomposition (16 pts)
Consider the tensor

$$
T=\sum_{i=1}^{K} \lambda_{i} \vec{a}_{i} \otimes \vec{b}_{i} \otimes \vec{c}_{i}
$$

where $\vec{a}_{i} \in \mathbb{R}^{d_{1}}$ are orthogonal and $\vec{b}_{i} \in \mathbb{R}^{d_{2}}$ are orthogonal, $\vec{c}_{i} \in \mathbb{R}^{d_{3}}$, and λ_{i} 's are positive and distinct. The goal is to recover the factors $\left(\lambda_{i}, \vec{a}_{i}, \vec{b}_{i}, \vec{c}_{i}\right)$ up to rescaling. Therefore, without loss of generality, we assume that $\left\|\vec{a}_{i}\right\|_{2}=\left\|\vec{b}_{i}\right\|_{2}=\left\|\vec{c}_{i}\right\|_{2}=1$ for all $1 \leq i \leq K$.
Let $T_{(1)} \in \mathbb{R}^{d_{1} \times d_{2} d_{3}}$ be the mode-1 matrization (or unfolding) of T obtained from the vertical fibers of $T . T_{(1)}$ can be expressed in terms of $\lambda_{i}, \vec{a}_{i}, \vec{b}_{i}, \vec{c}_{i}$'s as:

$$
T_{(1)}=\sum_{i=1}^{K} \lambda_{i} \vec{a}_{i}\left(\vec{c}_{i} \otimes_{\mathrm{Kro}} \vec{b}_{i}\right)^{\mathrm{T}}
$$

with $\otimes_{\text {Kro }}$ denoting the Kronecker product of two vectors:

$$
x \otimes_{\text {Kro }} y=\left[x_{1} y^{\mathrm{T}}, x_{2} y^{\mathrm{T}}, \cdots, x_{n} y^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{n m} \quad \text { for } x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

1. (5 pts) Let $X=T_{(1)} T_{(1)}^{\mathrm{T}}$. Express X in terms of $\lambda_{i}, \vec{a}_{i}, \vec{b}_{i}, \vec{c}_{i}$'s, and write its spectral decomposition. What is the rank of X ? Explain how to recover the vectors \vec{a}_{i} 's and corresponding λ_{i} 's.
2. (5 pts) Explain how to recover the vectors \vec{b}_{i} 's and how to pair them with the \vec{a}_{i} 's and λ_{i} 's.
3. (6 pts) Now that we have found $\left(\lambda_{i}, \vec{a}_{i}, \vec{b}_{i}\right.$)'s, describe a way to recover \vec{c}_{i} 's.

Hint: Try multilinear transformations of T!

Solution:

1.

$$
X=\sum_{i, j=1}^{K} \lambda_{i} \lambda_{j} \vec{a}_{i}\left(\vec{c}_{i} \otimes_{\mathrm{Kro}} \vec{b}_{i}\right)^{\mathrm{T}}\left(\vec{c}_{j} \otimes_{\mathrm{Kro}} \vec{b}_{j}\right) \vec{a}_{j}^{\mathrm{T}}
$$

From the definition of the Kronecker product, we have that $\left(\vec{c}_{i} \otimes_{\mathrm{Kro}} \vec{b}_{i}\right)^{\mathrm{T}}\left(\vec{c}_{j} \otimes_{\mathrm{Kro}} \vec{b}_{j}\right)=$ $\left(\vec{c}_{i}^{\mathrm{T}} \vec{c}_{j}\right)\left(\vec{b}_{i}^{\mathrm{T}} \vec{b}_{j}\right)$. Using the orthogonality of \vec{b}_{i} 's, and the assumption that the vectors are unit norm, we find:

$$
\begin{equation*}
X=\sum_{i=1}^{K} \lambda_{i}^{2} \vec{a}_{i} \vec{a}_{i}^{\mathrm{T}} \tag{2}
\end{equation*}
$$

Since \vec{a}_{i} 's are orthogonal, (??) is the spectral decomposition of X, thus X has rank K.
From the tensor T, we can find the matrix X. Computing spectral decomposition of X, we find λ_{i}^{2}, and the vectors \vec{a}_{i} 's. Since, λ_{i} 's are assumed to be positive, we can find λ_{i} 's.
2. Form the mode-2 matrization of T, which can be expressed as:

$$
T_{(2)}=\sum_{i=1}^{K} \lambda_{i} \vec{b}_{i}\left(\vec{a}_{i} \otimes_{\text {Kro }} \vec{c}_{i}\right)^{\mathrm{T}}
$$

Then, compute the matrix $Y=T_{(2)} T_{(2)}^{\mathrm{T}}$. Following the same steps as in the previous part, the spectral decomposition of Y is:

$$
Y=\sum_{i=1}^{K} \lambda_{i}^{2} \vec{b}_{i} \vec{b}_{i}^{\mathrm{T}}
$$

Therefore, \vec{b}_{i} 's can be recovered as the eigenvectors of Y.
3. For each $1 \leq i \leq K$, we consider the following linear transformation of T :

$$
T\left(\vec{a}_{i}, \vec{b}_{i}, .\right)=\sum_{j=1}^{K} \lambda_{j}\left(\vec{a}_{i}^{\mathrm{T}} \vec{a}_{j}\right)\left(\vec{b}_{i}^{\mathrm{T}} \vec{b}_{j}\right) \vec{c}_{j}=\lambda_{i} \vec{c}_{i}
$$

where in the last equality we used the orthogonality assumption of \vec{a}_{i} 's (or \vec{b}_{i} 's). Since, we know λ_{i}, we can find \vec{c}_{i} from the above transformation.

Problem 4 (12 pts). This problem consists of 4 short questions. Answer each point with a short justification or calculation.
(i) (3 pts) Determine the VC-dimension of the following hypothesis class defined on $x \in \mathbb{R}$:

$$
\mathcal{H}=\left\{\operatorname{sgn}\left(a x^{2}+b x+c\right) ; a, b, c, \in \mathbb{R}\right\}
$$

where

$$
\operatorname{sgn}(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(ii) (3 pts) Let $f(\vec{x})=\sum_{i=1}^{d}\left|x_{i}\right|^{\alpha}, \vec{x} \in \mathbb{R}^{d}, \alpha \geq 0$. State for which values of α the function is convex, and when this is the case give the subgradient set for each \vec{x}.
(iii) (3 pts) Let $\left\{\vec{u}_{i}, i=1, \ldots, d\right\}$ be an orthogonal basis of column vectors in \mathbb{R}^{d} where each vector has norm \sqrt{d}. We assign some probability distribution to the vectors of this basis. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable function and let $V_{i}=\vec{u}_{i} \vec{u}_{i}^{T} \nabla f(\vec{x}), i=1 \ldots, d$. Answer by true or false and justify:
(a) V_{i} is always a stochastic gradient.
(b) V_{i} is a stochastic gradient only if the probability distribution is uniform.
(iv) (3 pts) Suppose that the order-3 tensor $T \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ has Tucker decomposition with core tensor $G \in \mathbb{R}^{R_{1} \times R_{2} \times R_{3}}$, and factor matrices $A \in \mathbb{R}^{I_{1} \times R_{1}}, B \in \mathbb{R}^{I_{2} \times R_{2}}, C \in \mathbb{R}^{I_{3} \times R_{3}}$. Under what condition on G is the Tucker decomposition the same as the Canonical Polyadic Decomposition (CPD) in terms of rank one tensors with factor matrices A, B, C ? Under what condition on A, B, C is the CPD unique?

Solution:

1. The VC dimension is 3 . To prove this, we need to show that there is one configuration of three points such that all its labelings can be shattered, and that no set of 4 points can be shattered. Note that, from the definition of H we are only dealing with points on the x axis (although the VC dimension is still 3 in two dimensions). The case of 3 can easily be verified by checking the 8 possible labelings. And, any alternating labeling of four points will result in a configuration that cannot be shattered because quadratic functions can change signs at most twice.

2. For $\alpha=0$ the function is constant equal to 1 . Therefore it is convex and the subgradient is always $\{0\}$. For $0<\alpha<1$ the function is not convex. For $\alpha=1$ the function is
convex: the subgradient is constituted of vectors of the form $\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i}=1$ if $x_{i}>0, v_{i}=-1$ if $x_{i}<0$, and $-1 \leq v_{i} \leq 1$ if $x_{i}=0$. For $\alpha>1$ the function is convex and differentiable and the subgradient is constituted of vectors $\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i}=\alpha\left|x_{i}\right|^{\alpha-1}$ for $x_{i} \geq 0$ and $v_{i}=-\alpha\left|x_{i}\right|^{\alpha-1}$ for $x_{i} \leq 0$.
3. To have a stochastic gradient one has to check that $\mathbb{E}\left[\vec{u}_{i} \vec{u}_{i}^{T} \nabla f(\vec{x})\right]=\nabla f(\vec{x})$. Since $\mathbb{E}\left[\vec{u}_{i} \vec{u}_{i}^{T}\right]=\sum_{i=1}^{d} p_{i} \vec{u}_{i} \vec{u}_{i}^{T}$ we get the identity matrix for $p_{i}=\frac{1}{d}$ (since $\left\|\vec{u}_{i}\right\|=\sqrt{d}$). Therefore we have (a) is false; (b) is true; and (c) is of course false.
4. If G is a super diagonal tensor $G_{i, j, k}=\lambda_{i} \delta(i, j) \delta(j, k)$. Then, the CPD of T is:

$$
T=\sum_{i=1}^{R} \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i}
$$

with $R=\min \left\{R_{1}, R_{2}, R_{3}\right\}$, and is unique under conditions of Jenrich' theorem.

