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Problem 1. Consistent Learning ( 16 pts)

Let X be a domain set and Y be a set of labels. Let F be a set of possible labelling functions,

F ⊂ {f |f : X → Y}.

Definition: We say that A is a consistent learner for F using the hypothesis class H, if for

any labeling function f ∈ F and for all m ≥ 1, when given as input the set of samples S =

{(x1, f(x1)), · · · , (xm, f(xm))} where xi ∈ X , A outputs hS ∈ H such that hS(xi) = f(xi)

for 1 ≤ i ≤ m.

Remark: Question 1 is about the proof of a statement and question 2 is an application. You

can answer question 2 even if you do not prove the statement question 1.

1. (8 pts) Let F be a labelling class and H a finite hypothesis class which are not neces-

sarily equal. We suppose there exists a consistent learner A for F using H. Prove the

following statement:

For all f ∈ F and all distributions D over X and all ε, δ ∈ (0, 1), if A is given a set of

samples S = {(xi, f(xi))}mi=1 with xi ∼ D and size m such that

m ≥ 1

ε

(
log |H|+ log

1

δ

)
,

then with probability at least 1 − δ the learner A outputs a hypothesis hS ∈ H that

satisfies

Px∼D
[
hS(x) 6= f(x)

]
≤ ε

Hint: Fix the labeling function. Then, define a notion of “bad” hypotheses, and use

union bound.

Now, we consider the problem of learning conjunctions. Let X = {0, 1}n. Let F =

CONJUNCTIONSn denote the class of conjunctions over the n boolean variables z1, . . . , zn.

A literal is either a boolean variable zi or its negation z̄i. A conjunction is simply an ”and”

(∧) of literals. An example conjunction ϕ with n = 10 is

ϕ(z1, . . . , z10) = z1 ∧ z̄3 ∧ z̄8 ∧ z9

We want to learn a target conjunction φ∗ ∈ CONJUNCTIONSn from a sampling set S =

{(xi, φ∗(xi))}mi=1, and the hypothesis class is H = CONJUNCTIONSn. So here each sample

xi is a binary vector (xi,1, · · · , xi,10) assigned to (z1, . . . , z10). The corresponding label φ∗(xi)

equals 0 or 1.

2. (8 pts) Consider the following algorithm for learning conjunctions:

1. Set h = z1 ∧ z̄1 ∧ z2 ∧ z̄2 ∧ · · · ∧ zn ∧ z̄n.
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2. For i = 1, . . . ,m:

3. If φ∗(xi) == 1: (Ignore samples with 0 label)

4. For j = 1, . . . , n:

5. If xi,j == 0: (j-th bit of xi)

6. Drop zj from h.

7. Else:

8. Drop z̄j from h.

9. Output h.

(a) Apply the algorithm to the sample set S = {(0001, 0), (0111, 0), (1001, 1), (1011, 0)},
and determine the output. Check that the algorithm has outputed a consistent

hypothesis.

(b) Suppose now that the algorithm is indeed a consistent learner. Given (ε, δ) how

many samples are needed to have:

Px∼D
[
hS(x) 6= f(x)

]
≤ ε with probability at least 1− δ

for any distribution D, and set S ?
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Solution to Problem 1:

1. Fix the labeling function f and a distribution D on X . Call a hypothesis h ∈ H “bad”

if Px∼D
[
h(x) 6= f(x)

]
> ε. Let Eh be the event that m independent samples in S

drawn from D are all consistent with h, i.e. h(xi) = f(xi), for 1 ≤ i ≤ m. Then, if h

is bad, P [Eh] ≤ (1− ε)m ≤ e−εm.

Consider the event

E =
⋃

bad h∈H

Eh

Then, by union bound, we have:

P [E] ≤
∑

bad h∈H

P [Eh] ≤ |H|e−εm

If m ≥ 1
ε

(
log |H|+ log 1

δ

)
, then this probability is upper bounded by δ.

Thus, whenever m is larger than the bound, the probability that a consistent learner

returns a bad hypothesis hS ∈ E is at most δ. Which means that the event P (hS(x) 6=
f(x)) > ε has probability at most δ. Thus the event P (hS(x) 6= f(x)) > ε has

probability at least 1− δ.

2. (a) The output is h = z1 ∧ z̄2 ∧ z̄3 ∧ z4. Consistency is checked by plugging all four

xi ∈ S and checking that h(xi) = φ∗(xi).

(b) We have that |H| = 3n, because any variable can appear as zi or z̄i, or do not

appear in a conjunction. Then using part 1, we should have

m ≥ 1

ε
(log |H|+ log

1

δ
) =

1

ε
(n log 3 + log

1

δ
)
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Problem 2. Gradient descent( 16 pts)

Let f : Rd → R be a convex Lipshitz continuous differentiable function with Lipshitz constant

ρ > 0. Let S be a real symmetric strictly positive-definite d × d matrix with smallest

eigenvalue λmin > 0. We consider a gradient descent iteration for t ≥ 1 and step size η > 0:

xt+1 = xt − ηS−1∇f(xt) (1)

with initial condition x1 = 0. Further, define x∗ = argmin‖x‖∈B(0,R)f(x), where B(0, R) is

the ball of radius R.

1. (4 pts) The update equation (1) is in the form of an Euler forward scheme. Write down

the associated backward Euler scheme.

2. (6 pts) Consider the following iterations (assume the argmin exists and is unique)

xt+1 = argminx

{
f(x) +

1

2η
(x− xt)TS(x− xt)

}
Is the quantity in the bracket simply convex or strictly convex ? Show that this

iteration is equivalent to one of the two Euler schemes.

3. (6 pts) Show that if we choose the step size η = R
√
λmaxλmin

ρ
√
T

after T iterations we have

f
( 1

T

T∑
t=1

xt
)
− f(x∗) ≤ ρR√

T

√
λmax

λmin

Hint: recall that in class we proved this statement when S = I the identity matrix.

Here you can use an eigenvalue decomposition S−1 = UTΛ−1U . The following is also

useful:

〈
∇f

(
xt
)
, xt − x∗

〉
=
〈
U∇f

(
xt
)
, Uxt − Ux∗

〉
=

d∑
k=1

(U∇f)k(x
t)
(
Uxt − Ux∗

)
k

Justify why these steps can be used.
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Solution to Problem 2:

1. The backward Euler scheme is

xt+1 = xt + S−1∇f(xt+1).

2. The first term f is convex. The second term is strictly convex because S is positive

definite (with λmin > 0). Thus the sum is strictly convex.

Since f is differentiable we can differentiate the gradient of the quantity in the bracket

in order to find the argmin:

∇f(x) + η−1S(x− xt) = 0

which implies the backward Euler scheme:

xt+1 = xt − ηS−1∇f(xt+1)

3. Let S−1 = UTΛ−1U with U an orthogonal matrix, and Λ = Diag (λ1 · · ·λd). With

x̄ = 1
T

∑T
t=1 x

t, we have

f(x̄)− f (x∗) 6
1

T

T∑
t=1

(
f
(
xt
)
− f (x∗)

)
convexity

6
1

T

T∑
t=1

〈
∇f

(
xt
)
, xt − x∗

〉
convexity

=
1

T

T∑
t=1

〈
U∇f

(
xt
)
, Uxt − Ux∗

〉
=

d∑
k=1

1

T

T∑
t=1

(U∇f)k(x
t)
(
U
(
xt − x∗

))
k

=
d∑

k=1

λk
ηT

T∑
t=1

(
η

λk

)
(U∇f)k(x

t)
(
U
(
xt − x∗

))
k

=
d∑

k=1

λk
2ηT

T∑
t=1

{
−
((
U
(
xt − x∗

))
k
− η

λk
(U∇f)k(x

t)

)2

+
(
U
(
xt − x∗

))2
k

+
η2

λ2k
(U∇f )k (xt)2

}

Now, from the backward equation we have:

xt+1 = xt − ηUTΛ−1U∇(xt)

⇒ Uxt+1 = Uxt − ηΛ−1U∇f(xt)(
Uxt+1

)
k

=
(
Uxt

)
k
− η

λk
(U∇f)k(x

t)
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From which we get

f(x̄)− f (x∗) ≤
d∑

k=1

λk
2ηT

T∑
t=1

{
−
(
U
(
xt+1 − x∗

))2
k

+
(
U
(
xt − x∗

))2
k

+
η2

λ2k
(U∇f )k (xt)2

}

=
d∑

k=1

λk
2ηT

[(
U
(
x1 − x∗

))2
k
−
(
U
(
xT+1 − x∗

))2
k

]
+

d∑
k=1

λk
2ηT

T∑
t=1

η2

λ2k
(U∇f)k(x

t)2

≤ λmax

2ηT

d∑
k=1

(
U
(
x1 − x∗

))2
k

+
η

2Tλmin

T∑
t=1

‖U∇f‖2

=
λmax

2ηT

∥∥U (x1 − x∗)∥∥2 +
η

2λmin

‖∇f‖2

≤ λmax

2ηT
R2 +

η

2λmin

ρ2

where we used that x1 = 0 and ‖x∗‖2 ≤ R2 (by assumption) in the last inequality.

Set

η2 =
λmaxλminR

2

ρ2T

Then, we find:

f(x̄)− f (x∗) ≤ λmaxR
2ρ
√
T

2
√
λmaxλminRT

+

√
λmaxλminR

ρ
√
T

ρ2

2λmin

=

√
λmax

λmin

ρR

2
√
T

+

√
λmax

λmin

ρR

2
√
T

=

√
λmax

λmin

ρR√
T
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Problem 3. Tensor decomposition (16 pts)

Consider the tensor

T =
K∑
i=1

λi~ai ⊗~bi ⊗ ~ci

where ~ai ∈ Rd1 are orthogonal and ~bi ∈ Rd2 are orthogonal, ~ci ∈ Rd3 , and λi’s are positive

and distinct. The goal is to recover the factors (λi,~ai,~bi,~ci) up to rescaling. Therefore,

without loss of generality, we assume that ‖~ai‖2 = ‖~bi‖2 = ‖~ci‖2 = 1 for all 1 ≤ i ≤ K.

Let T(1) ∈ Rd1×d2d3 be the mode-1 matrization (or unfolding) of T obtained from the vertical

fibers of T . T(1) can be expressed in terms of λi,~ai,~bi,~ci’s as:

T(1) =
K∑
i=1

λi~ai
(
~ci ⊗Kro

~bi
)T

with ⊗Kro denoting the Kronecker product of two vectors:

x⊗Kro y = [x1y
T, x2y

T, · · · , xnyT]T ∈ Rnm for x ∈ Rn, y ∈ Rm

1. (5 pts) Let X = T(1)T
T
(1). Express X in terms of λi,~ai,~bi,~ci’s, and write its spectral

decomposition. What is the rank of X? Explain how to recover the vectors ~ai’s and

corresponding λi’s.

2. (5 pts) Explain how to recover the vectors ~bi’s and how to pair them with the ~ai’s and

λi’s.

3. (6 pts) Now that we have found (λi,~ai,~bi)’s, describe a way to recover ~ci’s.

Hint: Try multilinear transformations of T !
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Solution:

1.

X =
K∑

i,j=1

λi λj ~ai
(
~ci ⊗Kro

~bi
)T(

~cj ⊗Kro
~bj
)
~aTj

From the definition of the Kronecker product, we have that
(
~ci⊗Kro

~bi
)T(

~cj ⊗Kro
~bj
)

=(
~cTi ~cj

)(
~bTi
~bj
)
. Using the orthogonality of ~bi’s, and the assumption that the vectors are

unit norm, we find:

X =
K∑
i=1

λ2i ~ai~a
T
i (2)

Since ~ai’s are orthogonal, (??) is the spectral decomposition of X, thus X has rank K.

From the tensor T , we can find the matrix X. Computing spectral decomposition of

X, we find λ2i , and the vectors ~ai’s. Since, λi’s are assumed to be positive, we can find

λi’s.

2. Form the mode-2 matrization of T , which can be expressed as:

T(2) =
K∑
i=1

λi~bi
(
~ai ⊗Kro ~ci

)T
Then, compute the matrix Y = T(2)T

T
(2). Following the same steps as in the previous

part, the spectral decomposition of Y is:

Y =
K∑
i=1

λ2i
~bi~b

T
i

Therefore, ~bi’s can be recovered as the eigenvectors of Y .

3. For each 1 ≤ i ≤ K, we consider the following linear transformation of T :

T (~ai,~bi, .) =
K∑
j=1

λj (~aTi ~aj) (~bTi
~bj)~cj = λi ~ci

where in the last equality we used the orthogonality assumption of ~ai’s (or ~bi’s). Since,

we know λi, we can find ~ci from the above transformation.
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Problem 4 (12 pts). This problem consists of 4 short questions. Answer each point with a

short justification or calculation.

(i) (3 pts) Determine the VC-dimension of the following hypothesis class defined on x ∈ R:

H =
{

sgn
(
ax2 + bx+ c

)
; a, b, c,∈ R

}
where

sgn(x) =

{
1 if x > 0

0 otherwise

(ii) (3 pts) Let f(~x) =
∑d

i=1 |xi|α, ~x ∈ Rd, α ≥ 0. State for which values of α the function

is convex, and when this is the case give the subgradient set for each ~x.

(iii) (3 pts) Let {~ui, i = 1, . . . , d} be an orthogonal basis of column vectors in Rd where each

vector has norm
√
d. We assign some probability distribution to the vectors of this

basis. Let f : Rd → R be a differentiable function and let Vi = ~ui~u
T
i ∇f(~x), i = 1 . . . , d.

Answer by true or false and justify:

(a) Vi is always a stochastic gradient.

(b) Vi is a stochastic gradient only if the probability distribution is uniform.

(iv) (3 pts) Suppose that the order-3 tensor T ∈ RI1×I2×I3 has Tucker decomposition with

core tensor G ∈ RR1×R2×R3 , and factor matrices A ∈ RI1×R1 , B ∈ RI2×R2 , C ∈ RI3×R3 .

Under what condition on G is the Tucker decomposition the same as the Canoni-

cal Polyadic Decomposition (CPD) in terms of rank one tensors with factor matrices

A,B,C? Under what condition on A,B,C is the CPD unique?
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Solution:

1. The VC dimension is 3 . To prove this, we need to show that there is one configuration

of three points such that all its labelings can be shattered, and that no set of 4 points

can be shattered. Note that, from the definition of H we are only dealing with points

on the x axis (although the VC dimension is still 3 in two dimensions). The case of

3 can easily be verified by checking the 8 possible labelings. And, any alternating

labeling of four points will result in a configuration that cannot be shattered because

quadratic functions can change signs at most twice.

2. For α = 0 the function is constant equal to 1. Therefore it is convex and the subgradient

is always {0}. For 0 < α < 1 the function is not convex. For α = 1 the function is
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convex: the subgradient is constituted of vectors of the form (v1, . . . , vd) with vi = 1

if xi > 0, vi = −1 if xi < 0, and −1 ≤ vi ≤ 1 if xi = 0. For α > 1 the function

is convex and differentiable and the subgradient is constituted of vectors (v1, . . . , vd)

with vi = α|xi|α−1 for xi ≥ 0 and vi = −α|xi|α−1 for xi ≤ 0.

3. To have a stochastic gradient one has to check that E[~ui~u
T
i ∇f(~x)] = ∇f(~x). Since

E[~ui~u
T
i ] =

∑d
i=1 pi~ui~u

T
i we get the identity matrix for pi = 1

d
(since ‖~ui‖ =

√
d).

Therefore we have (a) is false; (b) is true; and (c) is of course false.

4. If G is a super diagonal tensor Gi,j,k = λiδ(i, j)δ(j, k). Then, the CPD of T is:

T =
R∑
i=1

λiai ⊗ bi ⊗ ci

with R = min{R1, R2, R3}, and is unique under conditions of Jenrich’ theorem.
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