
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Foundations of Data Science Assignment date: Friday, February 3rd, 2023, 9:15 am

Fall 2022 Due date: Friday, Feburary 3rd, 2023, 12:15 noon

Final Exam – SG0211

This exam is open book. No electronic devices of any kind are allowed. There are 4 problems.

Choose the ones you find easiest and collect as many points as possible. We do not necessarily

expect you to finish all of them. Good luck!
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Problem 1 (Fisher Goes Exponential). [15 pts]

Let pθ(x) denote a family of distributions parameterized by θ. Define the Fisher information

as

Iθ = Eθ[∇θ log pθ(X)(∇θ log pθ(X))T ].

(1) [5pts] Let pθ(x) = h(x)e⟨θ,ϕ(x)⟩−A(θ) be an exponential family. What is the Fisher

information in terms of the parameters of the family?

(2) [5pts - 1pt per question] Consider distributions of the form pλ(x) = λe−λx, where

λ ∈ R+.

1. Write it in the form of an exponential family.

2. What is Θ = {θ ∈ R : A(θ) < ∞}.

3. Is the family regular?

4. Is it minimal?

5. What is the Fisher information?

(3) [5pts - 1pt per question] Consider distributions of the form pp(k) = (1 − p)kp, where

p ∈ (0, 1) and k ∈ N.

1. Write it in the form of an exponential family.

2. What is Θ = {θ ∈ R : A(θ) < ∞}.

3. Is the family regular?

4. Is it minimal?

5. What is the Fisher information?
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Problem 2 (Compression). [15 pts]

Suppose P ∈ Π(X ,Y) be a probability distribution on X ×Y and (X, Y ) be a joint random

variable with distribution PXY with marginals PX and PY .

In what follows, assume that all codes are optimal, prefix-free, and binary. Opti-

mal here means having smallest possible average length. All logs are to the base 2.

(1) [1 pt] Let cX : X → {0, 1}∗ and cY : Y → {0, 1}∗ be optimal prefix free codes. What

are lower and upper bounds for the expected length of these codes cX and cY ?

(2) [1 pt] Let cXY : X × Y → {0, 1}∗ be an optimal prefix free code. What are lower and

upper bounds for the expected length of this code?

(3) [10 pts total] In this sub problem, assume that X, Y have a joint distribution according

to the following table:

Y=0 Y=1

X=0 1/4 0

X=1 1/8 1/8

X=2 1/8 1/8

X=3 0 1/4

(a) [4 pts] What are lower and upper bounds for the expected lengths of cX and cY ?

Are the lower bounds tight?

(b) [3 pts] What are lower and upper bounds for the expected lengths of cXY ? Is the

lower bound tight?

(c) [3 pts] For the above joint distribution, is it more efficient to compress separately

and concatenate the individual code words (which, as we saw in the lecture, is

guaranteed to yield a prefix free code), or to compress (X, Y ) jointly (again, in a

prefix free manner)?

(4) [3 pts] Assume that (X, Y ) has some generic joint distribution. Assume further that

I(X;Y ) > 1. Show that in this case optimal joint prefix free compression is more

efficient than compressing individually and concatenating.
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Problem 3 (Stability implies Generalization). [12 pts]

Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a training dataset composed of n i.i.d. samples

drawn fromD. As usual, we denote LD(h) = E(x,y)∼D[l(h(x), y)] and LS(h) =
1
n

∑n
i=1 l(h(xi), yi)

the true and empirical risks of a hypothesis h, respectively. For simplicity, let us denote by

hS the output of a learning algorithm when trained with dataset S.

An important property of learning algorithms is their ability to generalize, i.e., the true and

empirical risks of the output hypothesis should be close in expectation. Formally, we say

that a learning algorithm A ϵ-generalizes in expectation if

|ES[LS(hS)− LD(hS)]| < ϵ . (1)

An interesting connection arises when we investigate the stability of a learning algorithm.

Formally, we call a learning algorithm ϵ-uniformly stable if ∀S, S ′ datasets of size n that

differ in at most one sample we have

sup
(x,y)

l(hS(x), y)− l(hS′(x), y) < ϵ . (2)

Notations: (x1, y1), (x2, y2), . . . , (xn, yn), (x̃1, ỹ1), . . . , (x̃n, ỹn) are 2n independently sampled

training examples. We define S = {(x1, y1), . . . , (xn, yn)}, S̃ = {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and

S(i) = {(x1, y1), . . . , (xi−1, yi−1), (x̃i, ỹi), (xi+1, yi+1), . . . , (xn, yn)}.

(1) [2 pts] Prove that LD(hS) = ES̃[
1
n

∑n
i=1 l(hS(x̃i), ỹi)].

(2) [3 pts] Prove that ES,S̃[l(hS(x̃i), ỹi)] = ES,S(i) [l(hS(i)(xi), yi)].
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(3) [7 pts] Prove that an ϵ-uniformly stable learning algorithm ϵ-generalizes in expectation,

by justifying each step in the following sequence.

|ES[LS(hS)− LD(hS)]|
(a)
= |ES

[
LS(hS)− ES̃

[
1

n

n∑
i=1

l(hS(x̃i), ỹi)

]]
|

(b)
= |ES [LS(hS)]− ES,S̃

[
1

n

n∑
i=1

l(hS(x̃i), ỹi)

]
|

(c)
= |ES [LS(hS)]−

1

n

n∑
i=1

ES,S̃ [l(hS(x̃i), ỹi)] |

(d)
= |ES [LS(hS)]−

1

n

n∑
i=1

ES(i),(xi,yi) [l(hS(i)(xi), yi)] |

(e)
= |ES

[
1

n

n∑
i=1

l(hS(xi), yi))

]
− 1

n

n∑
i=1

ES,S(i) [l(hS(i)(xi), yi)] |

(f)
= | 1

n

n∑
i=1

ES,S(i) [l(hS(xi), yi))− l(hS(i)(xi), yi)] |

(g)

≤ 1

n

n∑
i=1

ϵ = ϵ
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Problem 4 (Multi-arm Bandits ). [20 pts]

We consider the following game where in each round t we can choose between [N ] =

{1, 2, . . . , N} different actions. After we choose an action at ∈ [N ] an adversary reveals

the loss of each action in this round, call it lti ∈ [0, 1], i ∈ [N ]. Note that this is an adversar-

ial setting, where the losses do not come from a probability distribution. This setting differs

from what we had discussed in class where only the loss for the chosen action was revealed.

Our goal is to design a randomized algorithm A which maintains a probability distribution

pt over actions, and achieves a sub-linear regret, i.e., R(T ) = maxi{
∑T

t=1EAt∼pt
[
ltAt

− lti
]
} ≤

o(T ). We also note that the adversary may know the probability distribution pt, but does

not know the realizations At. We will analyze the following algorithm:

Algorithm 1: Multiplicative Weights Update

Input: learning parameter ϵ

Initialization: p1i = 1/N,w1
i = 1,∀i ∈ [N ],Φ1 = N

for t = 1 to T do

At ∼ pt

Adversary reveals the loss vector lt and we suffer ltAt

Update weights wt+1
i = wt

i · exp(−ϵ · lti),∀i ∈ [N ] and let Φt+1 =
∑

i w
t+1
i

Update the probability distribution: pt+1
i = wt+1

i /Φt+1,∀i
end for

(1) [2 pts] Prove that wT+1
i = exp(−ϵ ·

∑T
t=1 l

t
i),∀i ∈ [N ]

(2) [8 pts] Prove that Φt+1 ≤ Φt · exp(ϵ2 − ϵ⟨pt, lt⟩)

Hint: Note that wt+1
i = pt+1

i ·Φt+1 and use the inequalities: (a) ex ≤ 1+x+x2,∀x ∈ [0, 1]

and (b) ex ≥ x+ 1, ∀x.

(3) [2 pts] Prove that ΦT+1 ≤ Φ1 · exp(ϵ2 · T − ϵ
∑T

t=1⟨pt, lt⟩)

(4) [8 pts] By noting that Φ1 · exp(ϵ2 · T − ϵ
∑T

t=1⟨pt, lt⟩) ≥ ΦT+1 ≥ wT+1
i ,∀i ∈ [N ] set the

learning parameter ϵ so that R(T ) ≤ 2
√

log(N) · T .
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