Fall 2023: Final Project
COM-309: Quantum Information Processing

In this project, you will learn about a quantum algorithm for the computation of the trace of a unitary
matrix. It has two parts: the theoretical one shows how the circuit is used in this algorithm and in the
practical one, you are asked to implement it and see how it works.

Part 1
Theoretical Background

1 Bell states
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or you may use a proof by induction.

2 An interesting quantum circuit
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Figure 1: Trace estimation circuit

Figure 1 illustrates a circuit used in the trace estimation algorithm that you will analyze in the following
exercise. U is a 2" x 2" unitary matrix. This circuit starts with the first qubit in the state |0}, and 2n qubits

in the state |Boo>®n. A Hadamard gate H = % E 11} is applied to the first qubit. Then, a “controlled

unitary “
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is applied from the first qubit to the first n halves of the Bell pairs. That is, the unitary U is applied to the
qubits 2,...,n + 1 based on the state of the qubit 1. Another Hadamard gate is applied to the first qubit.
Finally, the first qubit is measured in the computational basis {|0), |1)}.

1. Compute the probability of measuring the outcome |0) at the end of the circuit shown in Figure 1.

(a) What is the overall state after the first Hadamard gate?
Solution:

%um 1)) ® | Boo)®"

(b) What is the overall state after the controlled unitary? (Hint: use the expression of the Bell state
that you proved in question 1)

Solution:
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(c) What is the overall state after the second Hadamard gate?
Solution:
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(d) Show that the probability of getting the outcome |0) is 1 + 1 7-Re{Tr[U]}.
Solution: Write U = Ug + iU;. The probability of getting the outcome |0) is
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2. Discuss how the normalized real part of the trace 5-Re{Tr[U]} can be computed using this circuit.
Solution: To estimate the normalized real part of the trace, we can run the circuit N times and record
Ny = Ftzero outcomes. We can then obtain an estimate of the probability of getting the outcome |0),
Do = % The larger N is, the better the estimate. Then, we compute the estimate of the normalized
real part of the trace as 2py — 1.

3. Check that the matrix S = [(1) EJ represents a valid quantum operation. Solution: We can check

that SST = S'S = I, thus S represents valid unitary evolution.

4. We will modify the circuit in Figure 1 and apply S to the first qubit right after the ﬁrst Hadamard

gate (right before the controlled-unitary). Show how to use the new circuit to compute 5 Im{Tr[U]}.



Solution: The state evolution in the modified circuit is described below.

After the first Hadamard: )
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After the second Hadamard gate:
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Now we compute the probability of getting the outcome |0)
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To estimate the normalized imaginary part of the trace, we follow a similar idea as the one used for
estimating the real part. We run the modified circuit N times and record N, ) = #zero outcomes. We

N
can then obtain an estimate of the probability of getting the outcome |0}, p (I) ]f, . The larger N
is, the better the estimate. Then, we compute the estimate of the normahzed 1maginary part of the
trace as 2]3(()1) —1.

5. How many addition operations does a naive classical trace computation need to do to compute the
trace of a unitary acting on n qubits? Solution: A unitary acting on n qubits is a matrix of size
2™ x 2™, To compute the trace, a straightforward way is to sum up all the elements on the diagonal
of the unitary. Since there are 2" elements on the diagonal, we will need to perform 2" — 1 (complex)
addition operations, or 2(2" — 1) real additions , i.e., O(2") addition operations.

Part 11
Practical Implementation

For this part of the project, you will use IBM’s quantum computing simulators and a quantum computing
software development kit Qiskit, available at https://lab.quantum-computing.ibm.com/. Fill in your
solutions and code in the accompanying Jupyter notebook.



3 A random unitary and a quantum device

1. Generate a random unitary by generating a random circuit over n = 5 qubits with depth (i.e., number
of circuit time steps) = 3 using Qiskit.

2. Compute the trace of this unitary “classically”.

3. Run the trace estimation circuit on a quantum simulator. Compare the trace estimate from the
quantum circuit and the classical trace computation.

4 A mystery

i0(X®X)

You are given a unitary Umystery = € You do not know the angle 6.

1. How can you use the trace estimation circuit in Figure 1 to estimate 87 (Hint: use the Euler identity
for matrices M such that M? = I. ) Solution: Using the Euler identity, we can write

Ungstery = €7X®X) = cos (I @ T) 4 isin (X @ X).

Note that
Tr[Umystery] = cos 0Tr[I @ I] + isin 0Tr[X ® X | = 4 cos#.

Then, we may use the trace estimation circuit to obtain an estimate é for ;Re{Tr[Unystery]} = cos 6.
Then, we may compute the estimate for 6; 6 = cos™'(¢é).

2. Generate angles € [0, 27], and run the trace estimation circuit on Qiskit. Plot the estimates vs. 6.

5 Confidence intervals

Suppose we would like to understand how many times you need to run the trace estimation to be close
enough to real value. One of the estimates which characterizes this is a confidence interval (CI).

Let Xq,...,X; be a random sample from a probability distribution py with a parameter 6. Then,
(L(X),U(X)) is a CI at confidence level ~ if for any 6,

Bxpo (L(X) <0 < U(X)) = 7.

That is, L(X) and U(X) are 'numbers’ (or statistics) computed from the random variable X such that, with
probability ~, the true value of the parameter 6 should lie between them. Typically, one considers ~ close to
1, e.g. v =0.95 or v = 0.99. When the interval is "narrow” enough, with some degree of confidence, we can
think that the value of the parameter chosen from it is not too different from the real one. Often, it is hard
to construct a CI at the exact confidence level 7y; one is then satisfied with approximate equality.

One of the ways to derive (an approximate) CI is by application of the central limit theorem (CLT). Let
Xi,..., Xy be an i.i.d. sample with E [X;] = p and Var [X;] = 02 < 00,02 > 0, and suppose we want to find
CI for p. According to CLT — more precisely, one of its corollaries — if X := % 2?21 X, is sample mean and
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Suppose we want a CI at confidence level 1 — a. We denote z, as a p-quantile of standard normal

distribution, i.e. if Y ~ N (0,1), 2, is a such value that P (Y < z,) = p. Then, for sufficiently large F,
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As zg = —21-g, the CI bounds for y would be X + Z1—g - % If we would like to have 95% confidence

or

level, i.e. a=0.05, we would take z1_g = zp.975 ~ 1.96.
Now, you will apply this theory to the trace estimation algorithm.



1. Let X; be a random variable equal to 1 if i-th measurement gave |0) and 0 otherwise. Suppose we ran
the circuit k times, and ko times the result of measurement was |0). Let p = k—k" Show that X = p and

Sk = /P — D).

Solution:
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2. Write down CI for E [X;] at level 1 — cv. Derive from it a CI for Re{Tr[U]} at level 1 — a with
bounds 27! <13 — % tzi-g- ﬁ(lkﬁ)) Which value of p gives the widest interval?

Solution: Let p := % + s Re{Tr[U]}.
Then, E[X;] = E[L {i-th measurement was|0)}] = P (i-th measurement was|0)) = p. Knowing that,

we can write:
1 — 1 _
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Now, as Re{Tr[U]} = 2" (p — 1)

L1 p(l —p 1 H(l—p
. (2 <p_ S p<kp>> < Re{THU]} < 2 <p_ Liag p<kp>)> “1-a

Width of this interval is 2"22;_a - 4/ p(lk B). it is the widest when p = 1, which is more typical for p
close to 3, i.e. Re{Tr[U]} close to 0.

3. Take the circuit from Ex. 3 (the random one). For different values of k, run the trace estimation circuit
k times and compute 1) the previously derived single value estimate of Re{Tr[U]} and 2) the CI you
got in this exercise at level 95%.

Then, plot the real value of Re{Tr[U]}, the single-value estimate of it, and the CI against k.



