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Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 13 – Part II – Solutions

Exercise 1: Let F : M → N be a smooth map. Prove the following assertions:

(a) F ∗ : Ωk(N) → Ωk(M) is an R-linear map.

(b) It holds that F ∗(ω ∧ η) = (F ∗ω) ∧ (F ∗η).

(c) In any smooth chart
(
V, (yi)

)
on N , we have

F ∗

(∑′

I

ωIdy
i1 ∧ . . . ∧ dyik

)
=
∑′

I

(ωI ◦ F ) d
(
yi1 ◦ F

)
∧ . . . ∧ d

(
yik ◦ F

)
.

Solution:

(a) Let ω, η ∈ Ωk(N) and λ, µ ∈ R. Fix p ∈ M and let v1, . . . , vk ∈ TpM . We have(
F ∗(λω + µη)

)
p
(v1, . . . , vk) = (λω + µη)p

(
dFp(v1), . . . , dFp(vk)

)
= λωp

(
dFp(v1), . . . , dFp(vk)

)
+ µ ηp

(
dFp(v1), . . . , dFp(vk)

)
= λ(F ∗ω)p(v1, . . . , vk) + µ(F ∗η)p(v1, . . . , vk)

=
(
λ(F ∗ω)p + µ(F ∗η)p

)
(v1, . . . , vk),

which implies that (
F ∗(λω + µη)

)
p
= λ(F ∗ω)p + µ(F ∗η)p,

and whence F ∗ : Ωk(N) → Ωk(M) is an R-linear map.

(b) Assume that ω resp. η are k- resp. l-covectors. Fix p ∈ M and let v1, . . . , vk+l ∈ TpM .
We have

F ∗(ω ∧ η)p (v1, . . . , vk+l) = (ω ∧ η)F (p)

(
dFp(v1), . . . , dFp(vk+l)

)
=

1

k!l!

∑
σ∈Sk+l

(sgnσ)ω
(
dFp

(
vσ(1)

)
, . . . , dFp

(
vσ(k)

))
η
(
dFp

(
vσ(k+1)

)
, . . . , dFp

(
vσ(k+l)

))
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and

[(F ∗ω) ∧ (F ∗η)]p (v1, . . . , vk+l) =

=
1

k!l!

∑
σ∈Sk+l

(sgnσ) (F ∗ω)p
(
vσ(1), . . . , vσ(k)

)
(F ∗η)p

(
vσ(k+1), . . . , vσ(k+l)

)
=

1

k!l!

∑
σ∈Sk+l

(sgnσ)ω
(
dFp

(
vσ(1)

)
, . . . , dFp

(
vσ(k)

))
η
(
dFp

(
vσ(k+1)

)
, . . . , dFp

(
vσ(k+l)

))
.

As the two expressions agree, we conclude that

F ∗(ω ∧ η) = (F ∗ω) ∧ (F ∗η).

(c) The assertion follows immediately from (a), (b) and Proposition 8.11.

Exercise 2: Let (r, θ) be polar coordinates on the right half-plane H =
{
(x, y) | x > 0

}
.

Compute the polar coordinate expression for the smooth 1-form x dy−y dx ∈ Ω1(R2) and
for the smooth 2-form dx ∧ dy ∈ Ω2(R2).

[Hint: Think of the change of coordinates (x, y) = (r cos θ, r sin θ) as the coordinate
expression for the identity map of H, but using (r, θ) as coordinates for the domain and
(x, y) as coordinates for the codomain.]

Solution: We have

Id∗(x dy − y dx) = r cos θ d(r sin θ)− r sin θ d(r cos θ)

= r cos θ(sin θ dr + r cos θ dθ)− r sin θ(cos θ dr − r sin θ dθ)

= r2 cos2 θ dθ + r2 sin2 θ dθ

= r2 dθ

and

Id∗(dx ∧ dy) = d(r cos θ) ∧ d(r sin θ)

= (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ)

= r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr

= r dr ∧ dθ,

since dr ∧ dr = 0 = dθ ∧ dθ and dr ∧ dθ = −dθ ∧ dr.

Exercise 3:

(a) Let M be a compact, connected, smooth manifold of dimension n > 0. Show that
every exact smooth covector field on M vanishes at least at two points of M .

(b) Let V be a finite-dimensional real vector space and let ω1, . . . , ωk ∈ V ∗. Show that
the covectors ω1, . . . , ωk are linearly dependent if and only if ω1 ∧ . . . ∧ ωk = 0.
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(c) Consider the smooth map

F : R2 → R2, (s, t) 7→ (st, et)

and the smooth covector field ω ∈ X∗(R2) given by

ω = xdy.

Compute dω and F ∗ω, and verify by direct computation that d(F ∗ω) = F ∗(dω).

Solution:

(a) Let ω ∈ X∗(M) be exact and let f ∈ C∞(M) such that ω = df . Since M is compact,
f attains its minimum at a point p ∈ M and its maximum at a point q ∈ M , and since
df is represented in coordinates by the gradient of (the coordinate representation of) f ,
we have dfp = 0 = dfq. Note also that if p = q, then f is constant, and thus df = 0 by
Exercise 2 (e) from Exercise Sheet 13 – Part I.

(b) Assume first that the covectors ω1, . . . , ωk are linearly dependent. Then there exist

j ∈ {1, . . . , k} and λ1, . . . , λ̂j, . . . , λk ∈ R such that ωj =
∑

i ̸=j λiω
i. Therefore,

ω1 ∧ . . . ∧ ωj−1 ∧ ωj ∧ ωj+1 ∧ . . . ∧ ωk = ω1 ∧ . . . ∧ ωj−1 ∧
∑
i ̸=j

λiω
i ∧ ωj+1 ∧ . . . ∧ ωk

=
∑
i ̸=j

ω1 ∧ . . . ∧ ωj−1 ∧ ωi ∧ ωj+1 ∧ . . . ∧ ωk

= 0

by [Multilinear Algebra, Proposition 24(d)].
Assume now that the covectors ω1, . . . , ωk are linearly independent. We will show

below that (the alternating k-multilinear function) η := ω1 ∧ . . . ∧ ωk ̸= 0. It suffices to
find v1, . . . , vk ∈ V such that η(v1, . . . , vk) ̸= 0. To this end, set n = dimR V and note that
n ≥ k. Since ω1, . . . , ωk are linearly independent elements of V ∗, we can complete them to
a basis {ω1, . . . , ωk, ωk+1, . . . , ωn} of V ∗, and consider subsequently the basis {v1, . . . , vn}
of V dual to {ωj}; see (the second paragraph after) [Multilinear Algebra, Proposition 4].
By [Multilinear Algebra, Proposition 24(d)] we then obtain

η(v1, . . . , vk) = det
((

ωj(vi)
))

= det
(
δji
)
= 1,

and thus η ̸= 0, as desired.

(c) We have
dω = dx ∧ dy

and
F ∗ω = (st) d(et) = stetdt.

Therefore,

d(F ∗ω) = d(stet) ∧ dt = (tet ds+ s(1 + t)et dt) ∧ dt = tet ds ∧ dt

and
F ∗(dω) = d(st) ∧ d(et) = (t ds+ s dt) ∧ (et dt) = tet ds ∧ dt.
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Exercise 4: Consider the smooth 2-form

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

on R3 with standard coordinates (x, y, z).

(a) Compute ω in spherical coordinates for R3 defined by

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

(b) Compute dω in spherical coordinates.

(c) Consider the inclusion map ι : S2 ↪→ R3 and compute the pullback ι∗ω to S2, using
coordinates (φ, θ) on the open subset where these coordinates are defined.

(d) Show that ι∗ω is nowhere zero.

Solution:

(a) We have

dx = d(ρ sinφ cos θ) = sinφ cos θ dρ+ ρ cosφ cos θ dφ− ρ sinφ sin θ dθ,

dy = d(ρ sinφ sin θ) = sinφ sin θ dρ+ ρ cosφ sin θ dφ+ ρ sinφ cos θ dθ,

dz = d(ρ cosφ) = cosφ dρ− ρ sinφ dφ.

Therefore, one computes that

dy ∧ dz = ρ2 sin2 φ cos θ dφ ∧ dθ + ρ sinφ cosφ cos θ dθ ∧ dρ− ρ sin θ dρ ∧ dφ,

dz ∧ dx = ρ2 sin2 φ sin θ dφ ∧ dθ + ρ sinφ cosφ sin θ dθ ∧ dρ+ ρ cos θ dρ ∧ dφ,

dx ∧ dy = ρ2 cosφ sinφ dφ ∧ dθ − ρ sin2 φ dθ ∧ dρ.

By combining these expressions, we thus obtain

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

= (ρ3 sin3 φ cos2 θ + ρ3 sin3 φ sin2 θ + ρ3 cos2 φ sinφ) dφ ∧ dθ

+ (ρ2 sin2 φ cosφ cos2 θ + ρ2 sin2 φ cosφ sin2 θ − ρ2 sin2 φ cosφ)︸ ︷︷ ︸
=0

dθ ∧ dρ

+ (−ρ2 sinφ sin θ cos θ + ρ2 sinφ sin θ cos θ)︸ ︷︷ ︸
=0

dρ ∧ dφ

= ρ3 sinφ (sin2 φ cos2 θ + sin2 φ sin2 θ + cos2 φ)︸ ︷︷ ︸
=1

dφ ∧ dθ

= ρ3 sinφ dφ ∧ dθ.

(b) We have
d
(
ρ3 sinφ

)
= 3ρ2 sinφ dρ+ ρ3 cosφ dφ,

so we obtain
dω = d

(
ρ3 sinφ

)
∧ dφ ∧ dθ = 3ρ2 sinφ dρ ∧ dφ ∧ dθ.
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Another way to compute dω would be to note that

dω = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy = 3dx ∧ dy ∧ dz.

For the standard top differential form dx∧dy∧dz on R3, a change of coordinates induces
a factor given by the determinant of the Jacobian. You may remember or look up (or
compute) that the determinant of the Jacobian of spherical coordinates is ρ2 sinφ, so we
obtain dω = 3ρ2 sinφ dρ ∧ dφ ∧ dθ as well.

(c) We just have to put ρ = 1 in the result of part (a). To justify precisely what is
going on, let us spell this out in detail. Note that the change into spherical coordinates
is provided by the diffeomorphism

G : R>0 × (0, π)× (0, 2π) → U ⊆ R3

(ρ, φ, θ) 7→ (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ),

where V = {(x, y, z) | y ̸= 0}. So what we computed above is G∗(ω|V ). Note that
spherical coordinates on the sphere are provided by the diffeomorphism

F : (0, π)× (0, 2π) → V ⊆ S2

(φ, θ) 7→ (sinφ cos θ, sinφ sin θ, cosφ),

where U = S2 ∩ V . If we denote by j the embedding

j : (0, π)× (0, 2π) → R>0 × (0, π)× (0, 2π)

(φ, θ) 7→ (1, φ, θ),

then this is precisely set up so that G◦ j = ι◦F . What we want to compute is F ∗ι∗(ω|V ),
and this is given by

F ∗ι∗(ω|V ) = (ι ◦ F )∗(ω|V ) = (G ◦ j)∗(ω|V ) = j∗G∗(ω|V )
= j∗(ρ3 sinφ dφ ∧ dθ)

= sinφ dφ ∧ dθ.

(d) As sinφ ̸= 0 for φ ∈ (0, π), we infer that F ∗ι∗(ω|V ) = sinφ dφ ∧ dθ is nowhere
vanishing on (0, π) × (0, 2π). As F is an isomorphism, we obtain that ι∗(ω|V ) = (ι∗ω)|U
is nowhere vanishing on U , i.e., at the points of S2 where y ̸= 0. To conclude, note that
we can do the exact same calculations for spherical coordinates around the x- and y-axes,
and obtain that then ι∗ω is non-zero also at all points where z ̸= 0 resp. x ̸= 0. Hence,
ι∗ω is nowhere zero.

Exercise 5:

(a) Exterior derivative of a smooth 1-form: Show that for any smooth 1-form ω and any
smooth vector fields X and Y on a smooth manifold M it holds that

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

(
[X, Y ]

)
.
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(b) Let M be a smooth n-manifold, let (Ei) be a smooth local frame for M and let (εi) be
the dual coframe. For each i, denote by bijk the component functions of the exterior
derivative of εi in this frame, and for each j, k, denote by cijk the component functions
of the Lie bracket [Ej, Ek]:

dεi =
∑
j<k

bijk ε
j ∧ εk and [Ej, Ek] = cijk Ei.

Show that bijk = −cijk.

Solution:

(a) Choose local coordinates
(
U, (xi)

)
and write

ω =
∑
i

ci dx
i, X =

∑
i

fi
∂

∂xi
, Y =

∑
i

gi
∂

∂xi
.

Let p ∈ M be arbitrary. Then

[dω(X, Y )](p) = (dω)p(Xp, Yp) =
∑
i

[(dci)p ∧ (dxi)p](Xp, Yp)

=
∑
i

[
(dci)p(Xp)(dx

i)p(Yp)− (dci)p(Yp)(dx
i)p(Xp)

]
=
∑
i,j

[
gi(p)fj(p)

∂ci
∂xj

(p)− fi(p)gj(p)
∂ci
∂xj

(p)

]
.

On the other hand, we have[
X
(
ω(Y )

)]
(p) =

∑
i

[X(cigi)](p) =
∑
i

gi(p)[X(ci)](p) + ci(p)[X(gi)](p)

=
∑
i,j

[
gi(p)fj(p)

∂ci
∂xj

(p) + ci(p)fj(p)
∂gi
∂xj

(p)

]
and [

Y
(
ω(X)

)]
(p) =

∑
i

[Y (cifi)](p) =
∑
i

fi(p)[Y (ci)](p) + ci(p)[Y (fi)](p)

=
∑
i,j

[
fi(p)gj(p)

∂ci
∂xj

(p) + ci(p)gj(p)
∂fi
∂xj

(p)

]
as well as

[
ω
(
[X, Y ]

)]
(p) =

[∑
i,j

ci(p)fj(p)
∂gi
∂xj

(p)− ci(p)gj(p)
∂fi
∂xj

(p)

]
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where we used part (a) of Exercise 5, Sheet 11. By combining these expressions, we obtain[
X
(
ω(Y )

)
− Y

(
ω(X)

)]
(p) =

(∑
i,j

gi(p)fj(p)
∂ci
∂xj

(p) + ci(p)fj(p)
∂gi
∂xj

(p)

)

−

(∑
i,j

fi(p)gj(p)
∂ci
∂xj

(p) + ci(p)gj(p)
∂fi
∂xj

(p)

)

=

(∑
i,j

gi(p)fj(p)
∂ci
∂xj

(p)− fi(p)gj(p)
∂ci
∂xj

(p)

)

+

(∑
i,j

ci(p)fj(p)
∂gi
∂xj

(p)− ci(p)gj(p)
∂fi
∂xj

(p)

)
= [dω(X, Y )](p) +

[
ω
(
[X, Y ]

)]
(p).

This yields the assertion.

(b) Let us compute dεi(Ej, Ek) for some i, j, k with j < k. By part (a) we obtain

dεi(Ej, Ek) = Ej

(
εi(Ek)

)
− Ek

(
εi(Ej)

)
− εi

(
[Ej, Ek]

)
= Ej(δik)︸ ︷︷ ︸

=0

−Ek(δij)︸ ︷︷ ︸
=0

−cijk = −cijk,

where in the last step we used that a derivation evaluated at a constant function gives 0.
On the other hand, we have

dεi(Ej, Ek) =
∑
j′<k′

bij′k′
[
εj

′ ∧ εk
′
]
(Ej, Ek) = bijk,

where we used that εj
′ ∧ εk

′
= ε(j

′,k′); see [Multilinear Algebra, Lemma 20(c) and Propo-
sition 25(c)]. Hence, bijk = −cijk.

Remark.

(1) Exercise 5(b) shows that the exterior derivative is in a certain sense dual to the Lie
bracket. In particular, it shows that if we know all the Lie brackets of basis vector
fields in a smooth local frame, we can compute the exterior derivatives of the dual
covector fields, and vice versa.

(2) There is an analogue of Exercise 5(a) for smooth k-forms as well, which is referred to
as the invariant formula for the exterior derivative in the literature. Specifically, if
ω ∈ Ωk(M), then for any X1, . . . , Xk ∈ X(M) it holds that

dω(X1, . . . , Xk+1) =
∑

1≤i≤k+1

(−1)i−1Xi

(
ω(X1, . . . , X̂i, . . . , Xk+1)

)
+

+
∑

1≤i<j≤k+1

(−1)i+jω
(
[Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1

)
,

where the hats indicate omitted arguments. It is worthwhile to mention that the above
formula can be used to give an invariant definition of d, as well as an alternative proof
of Theorem 8.21 on the existence, uniqueness, and properties of d.
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Exercise 6:

(a) Let M be a smooth manifold and let ω ∈ Ω1(M) = X∗(M). Show that the following
are equivalent:

(i) ω is closed.

(ii) ω satisfies
∂ωj

∂xi
=

∂ωi

∂xj

in some smooth chart
(
U, (xi)

)
around every point p ∈ M .

(iii) For any open subset U ⊆ M and any X, Y ∈ X(U), we have

X
(
ω(Y )

)
− Y

(
ω(X)

)
= ω

(
[X, Y ]

)
.

(b) Consider the smooth covector fields

ω = y cos(xy) dx+ x cos(xy) dy ∈ X∗(R2)

and
η = x cos(xy) dx+ y cos(xy) dy ∈ X∗(R2).

Show that ω is closed and exact, whereas η is neither closed nor exact.

Solution:

(a) We will show that (i) ⇒ (iii) ⇒ (ii) ⇒ (i).

(i)⇒(iii): Let us suppose that ω is closed, i.e. dω = 0. Let X, Y be smooth vector fields
over some open subset U ⊆ M . By part (a) of Exercise 5, we have

0 = dω = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

(
[X, Y ]

)
,

so (iii) follows.

(iii) ⇒ (ii) Suppose that (iii) holds. Let p ∈ M be arbitrary, let
(
U, (xi)

)
be a chart

around p, and write

ω =
∑
i

ωi dx
i.

For 1 ≤ i ≤ n, denote Xi = ∂/∂xi. Then

Xi

(
ω(Xj)

)
−Xj

(
ω(Xi)

)
= Xi(ωj)−Xj(ωi) =

∂ωj

∂xi
− ∂ωi

∂xj
.

On the other hand, note that by part (b) of Exercise 5, Sheet 11, we have [Xi, Xj] = 0.
Therefore, by applying (iii) to X = Xi and Y = Xj, we obtain

∂ωj

∂xi
− ∂ωi

∂xj
= Xi

(
ω(Xj)

)
−Xj

(
ω(Xi)

)
= ω

(
[Xi, Xj]

)
= 0,

so (ii) follows.
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(ii) ⇒ (i): Suppose that (ii) holds. Let p ∈ M be arbitrary and let
(
U, (xi)

)
be the chart

around p given by (ii). We have seen in the lecture notes (before Proposition 8.20 ) that

dω =
∑
i<j

(
∂ωj

∂xi
− ∂ωi

∂xj

)
︸ ︷︷ ︸

=0 by (ii)

dxi ∧ dxj

and thus dω = 0 on U . In particular, dωp = 0, and as p ∈ M was arbitrary, we conclude
that dω = 0 on M ; in other words, ω is closed.

(b) We first deal with ω. Consider the function

f : R2 →, (x, y) 7→ sin(xy)

and observe that df = ω; in other words, ω is exact, and therefore ω is closed. (This can
also be verified with a direct computation).

We now deal with η. We compute that

dη = d (x cos(xy)) ∧ dx+ d (y cos(xy)) ∧ dy

=
(
(cos(xy)− xy sin(xy)) dx+ (−x2 sin(xy)) dy

)
∧ dx +

+
(
−y2 sin(xy) dx+ (cos(xy)− xy sin(xy)) dy

)
∧ dy

= −x2 sin(xy) dy ∧ dx− y2 sin(xy) dx ∧ dy

= (x2 − y2) sin(xy) dx ∧ dy,

which does not vanish identically, that is, η is not closed (see also (a)(ii)), and thus η
cannot be exact either.
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