
Thomas - POCS - Fall 2023 - EPFL

Hardware-Software Codesign

Outline

Some historical perspective on the HW/SW dance.

Performance Cost of Abstraction

Chasing the Unicorn

Communication and Interfaces - 3 case studies

Principles of Acceleration

Performance Cost of Specialisation

Hardware/Human Codesign
Pre-Turing Era - 1930s

Fancy tabulating machine could High Value Computations: or even

Technology was electromechanical relays

Typically, quite a few “telescoping" (pipelining) tricks (example)

Humans interact with the kernel performed by the machine:

Machine Input: Feed it punchcards with data

Machine Outputs:

• New punchcards (write once medium, for partially accumulated data)

• Human readable summary on fan-fold paper

Cool computations: SELECT/WHERE/GROUP BY !

Performance: Could ingest 150 punch cards per minutes

∑
i

wi . xi∑
i

x2
i

Source: www.columbia.edu/cu/computinghistory/packard.html

1945 - Vacuum Tube’s Era
Von Neumann’s magic - Death of hardware, birth of Software
Reports on Building an “Automatic Computing Device” (C[entral], M[emory], R[ecording] (for IO))

Von Neumann’s Insight/Suggestion (Mechanical - ms, Vacuum tube - us)

(https://web.mit.edu/STS.035/www/PDFs/edvac.pdf)

Very rich paper: why binary rocks, thoughts about errors in computing, JIT, biomimetics, brain VS computer, synchrony/asynchrony …

https://web.mit.edu/STS.035/www/PDFs/edvac.pdf

Feynman’s observation
Plenty of Room at the Bottom
1959 Feynman mentally explores the future of miniaturisation: in the future
(present) we should be able to do insanely small machines!

Research and industry makes room at the bottom: Moore’s law

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

Feynman was right

Transistor Free Lunch Party!

Side-effects:

Smaller transistor ~ faster clock ~ no effort, same design go faster

Smaller transistor ~ more transistors on a given chip, what do we do with them?

Von Neumann’s suggestion of simple machine is dead:

• And now it is not just arithmetic tricks

• New optimisation opportunities!

~David J. Wheeler (Maybe ?)

"All problems in computer science can be solved by
another level of indirection …

except for the problem of too many levels of indirection"

Mid 2010s, after 70 years of indirections:
time for a spring cleaning

Cost of Abstraction
There is Plenty of Room at The Top

Source: https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf

TPUv1/Processor: 28/22nm, ˜350mm2, ˜700MHz/˜3GHZ

TPU v1 (2016) ˜90,000.000 100% (???)˜270~15,000,000<0.001

https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf

Remarks

Flame war between C/Java is a fight between 0.01% efficiency and 0.03% efficiency (This
depends from program to program, compiler to compiler!)

Modern processors already embed a whole bunch of accelerators: Vector unit, often vastly
underused

Algorithm complexities make simplifying assumptions (RAM model) and hides real cost

size(Workforce) usually decreases with speedup :(

Surprisingly, there are also performance costs to specialisation (end of the lecture)

Performance evaporation (Knuth’s challenge)
Intuitions about the cost of software abstractions

(Demo Konata if t < 15 && Linux laptop plugged)

Knuth’s challenge (1989): “Make a thorough analysis of everything your computer does during one
second of computation.”

Pragmatically: Modern AI is enabled by codesign

GPT3 evaluation ~

>> Read all the paper books in the EPFL library

Compute a nontrivial (arithmetic intensive) function of all the words present in
all the books and some context

Output 1 token

Rinse and repeat, with the updated context of adding the produced token

Hundreds of GB per token! It is a pharaonic amount of compute

(Chasing the Unicorn)

The Crumple-Horned Snorkack of Codesign

The Crumple-Horned Snorkack of Codesign
Some mythical thing that probably does not exist, but is still cool to look for

Write your algorithm in Foo-Lang

foolc —powerConstraint=1W —areaConstraint=100um2 —clock=3GHz —IPblockLibraries
armA72 matmulGoogle128 ether10GBBroadcom -O3 myProgram.fool

-> Produce hardware description (Maybe FPGA configuration or directly ASICs description) +
software for the CPUs + software glue code + user app that uses all that

Next Level Unicorn : Foo-Lang is actually C/Python/Haskell/Scala, so we can just reuse existing
code

Escape Hatch:

"foolc" does not work for all programs

"foolc” might produce suboptimal code

Progress made while looking for the Crumple-Horned Snorkack

Behavioral VS Structural Verilog, and others High-Level Hardware Languages

Modern High Level Synthesis

System-Level Design Tools

Field Programmable Gate Arrays

Communication and Interfaces

Partitioning and Mapping, Design Space Exploration

Communication and Interfaces
by examples

Case Study 1:
AES instructions -
Tightly coupled accelerators

What is AES

Symmetric key crypto Block Cipher

Compiling with -O3 (for RISCV):

~300 straight-line instructions per AES-round (Same for X86-clang)

Encrypting 128 bits requires 10 rounds -> ~3000 instructions

Question:
If I send a file by email, how many times will
the content of the file be AES-ed before it is
opened by the recipient?

AES is a “High-Value" Application

AES is a part of most commonly used cipher suites for TLS.

TLS protocol massively used on the internet

Most data outputted on the network get crunched through AES

WIFI also uses AES

FileVault on Mac

-> quite Important for server workloads

There are other reasons to accelerate AES (Security)

AES encryption

M and Key are 128 bits (16 * 8 bits)

AES_encrypt(M, Key) = 128 new bits

M

Key

AESENC
From https://eprint.iacr.org/2016/299.pdf

AESENC xmm1, xmm2

“Perform one round of an AES encryption flow, using one 128-bit data (state) from
xmm1 with one 128-bit round key from xmm2”

AESENC can be thought of like ADD, a new arithmetic instruction. Can nicely integrate
it in the pipeline of the processor, easy!

Latency: 4 cycles, Throughput: 1 token per cycle

Deployment “challenge":

People should use the AESENC instruction and not their own C implementation
anymore!

https://eprint.iacr.org/2016/299.pdf

Scope and Limitations of AESENC-style of acceleration

There are quite a few applications that can be enabled by low-latency instructions

Intel Vector Extensions (MMX -> SSE -> AVX) originally for multimedia and then
more general

Compiler are still struggling hard to properly use those extensions

Limitations:

Many computations act on more data than just data that can be held in registers

• Need access to memory

Many computations need hundred of cycles to complete

Why is it a limitation?

Why is it a problem if instruction needs to access a lot of memory?

Accelerators are just devices that compute!

How do devices work?

Examples of successful “accelerators”

DL accelerators (example: Gemmini, NPU, TPU)

Network Interface Cards (NIC)
TCP/IP stack runs on some NIC

GPU, GPGPU

Sound Card

Basic observations
Wide discrepancy in programmability

Programmable:

• Modern GPU - runs more or less arbitrary Cpp code

• Modern smartNIC can run programs too

Limited programmability:

• my old ethernet card

• my old GPU

• my old sound card

Here could be a reasonable moment
to do a break if we are around 45mn

Case study 2: a simplified-NIC

Approximate High-level picture – NIC

Uncached

Uncached

MMIO

Std Memory

operations

Simplified journey of a packet in a fancy NIC

Processor tells NIC:

Address in RAM for SEND packets

Address where NIC should put the RECEIVED packets

Application generate data to send:

“GET / HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0

…”

Wrap the string in an envelope with an address

Put the envelope in the SEND location

 
Agreeing on send locations

•

•ToSend0x1000

uncached store
0xF000_0000
0x1000

ToSend:?
Received:?

0x1000

•

•

 
Agreeing on receive location

•

•ToSend

•Received

0x1000

0x5000

uncachedstore
0xF000_0004
0x5000

ToSend:0x1000
Received:?0x5000

•

•

 
Simplified journey of a received packet

•

•ToSend

•Received

0x1000

0x5000

ToSend:0x1000
Received:0x5000

•

•

The NIC-CPU system

ToSend and Receive are in-mem circular buffers:

CPU push into ToSend and pull from Received

NIC push into Received and pull from ToSend

The NIC, once configured, operate independently of the core

The NIC performs computations – networking cost little CPU compute

Arrivals and departures
The challenge of synchronisation

How does NIC know when something should be sent?

How does CPU know when something arrived?

Two solutions:

Active polling – check every 1ms

Doorbell mechanism:

CPU -> NIC: store to special location

NIC -> CPU: Interrupts

Characteristic time: ~1us

MMIO vs Shared memory

Through MMIO the processor sends commands and pointers

The data is not sent directly through MMIO, but through shared memory

Why MMIO to NIC must be uncached?

Why stores to ToSend must be uncached?

Using Devices from SW

Write a program to manage the shared buffers with the device:

Allocate buffers

Recycle buffers

Send address of buffers to device

Doorbell code, etc…

Such a program is named a device driver!

Memory-to-memory accelerators

Case study 3 - Robomorphic Computing

Accelerator for robots
Sabrina Neuman, Radhika Ghosal, Brian Plancher & al

Domain Specific Computations (accelerators):

Kernel computations for Model Predictive Control – [ASPLOS21, ICRA2021,
ISCA23]

Guess Control 1 (Simulated)

Target trajectory

Guess 2 (After 1 step GD)

…
Guess 10

Rinse and repeat

What kind of compute?
As a computer architect - don’t have to understand! Just need quantitative numbers

Control rate, roboticist friends recommend: 300Hz - 1KHz

Need to compute k-time (10 < k < 100) time steps in the predicted position of the
robot + gradient

Need to descend the gradient ~3-20 steps

Surprise, surprise: boils down to matrix multiply, matrix adds

All those matrices have a fix-structure that depends on topology of the robot

FPGA has 6000 “multipliers”, how to make use of them most efficiently?

Prototyping an accelerator on FPGA (~10X faster clock in ASIC)

Performance

Performance considerations -
When accelerators can’t do miracles

Latency considerations

On-chip latency:

1 cycle (registers memory) -~10 clock cycles (last level cache)

Off-chip (e.g. PCIE) latency:

1us (~4000 cycles)

A whole lot of CPU work!

Throughput considerations

PCIE throughput (gen 2):

500MB/s per lane (up to 16 lanes)

Reality: a few GB/s

CPU/DRAM bandwidth ~5-10x more (60-150GB/s)

Internal GPU bandwidth: ~1TB/s

• GPU companies work hard to avoid the PCIE bottleneck

More modern PCIE: 1GB/s (resp. 2GB/s) per lane for Gen3 (resp. Gen4)

Throughput takeaways
FPGA being disappointing

If a CPU already manages to saturate memory bandwidth, an accelerator won’t
go faster!

FPGA will typically go slower when because PCIE bandwidth < DRAM
bandwidth ?

Richard L. Sites, Digital Equipment Corporation (Microprocessor Reports, 1996)

Of the importance of the memory system:
“It’s the memory, stupid!”

Source: https://websrv.cecs.uci.edu/~papers/mpr/MPR/ARTICLES/101004.pdf

Some papers promise a better future for
PCIE

Principles of Accelerators

Guidelines for accelerators
(Borrowed from Bill Dally’s talk)

1. Parallelism

2. Locality

3. Optimize Memory Orchestration and Control

4. Custom datatypes and operations

Parallelism

1. Look at the dataflow graph of your computation, at a fine granularity

2. What is the critical path of your computation, compared to the amount of
compute nodes?

3. Does it make sense to pipeline the computation?

M

Key

Locality - Arithmetic Intensity
Reuse the data you bring from memory multiple times!

Arithmetic Intensity is the ratio of arithmetic operations to data movement (bytes)

Low Arithmetic Intensity <-> Memory bottlenecked!

Dot product: not so high arithmetic density ~

Matrix multiply: much higher arithmetic density ~

m
2m

= O(1)

m3

2m2
= O(m)

Optimize memory orchestration
Application specific “memory pipelining” / Decoupled execution

input
layer

hidden
layer

output
layer

A simple neural network

Specialized Datatypes
Software easily goes bloat when working on custom Datatypes with custom
operations

Remember AES is expensive in SW because does weird things to 128 bits!

Domain specific analysis of structure of computation:

Modern ML -> lot to gain if reducing number of bits in representation

Joker:
CPU can achieve max speed (random access in
large memory/streaming from large memory),
Accelerator = Energy Savings

The Performance Cost of
Specialisation

Drawback of Old School HW/SW codesign

Take application X, handwrite code that leverage Accelerator W (V1), performs great

[…] Time elapse

10 years later, Accelerator W (V13)

-> Handwritten code performs poorly (when it works)

Software Integration
The elephants are in the room

Having defined new instructions is not the end of the story:

If I add AESENC, my libssl library won’t suddenly start using it

Have to worry about cross-platform

If I have matmul 16x16, or matmul (nxm forall n,m<64),

512x512 matmul?

convolution?

Arbitrary linear/tensor algebra operator

Compilation challenges
The elephants are in the room

All things considered standard compilation is easy:

Usually not too many different ways to compile

With Domain Specific, program space is typically very complicated

A*(B*C)*A or (A*B) * (C * A) …

Compiler must find good sequence of instructions modulo rewrites!

Every domain has its own set of rewrite - every time requiring a new compiler

Compiler must consider an accurate cost model of memory!

Compilation – Sync issues
The elephants are in the room

Sync issues:

Need to add explicit data movement instructions if I want to use the data
computed on CPU

Hot research ideas:

Decoupling functionality and scheduling/performance [Halide/Exo]

Maybe not a fully push-button compilation, more an “assistant-compiler”

Maybe enable user to augment the compiler - easily add transformations with
triggers

Mojo/MLIR - the future of compilers?
https://www.youtube.com/watch?v=SEwTjZvy8vw

Conclusion

“Accelerators" and Codesigns are not new - Yesterday they enabled census, today
they are enabling AI

There are performance costs to Abstraction

There are good guidelines/models for what can be accelerated

There are hidden performance costs to specialization

There is still work to do to better understand those costs in general

Accelerators 100 years later
SIGCOMM 2023

Same good old , with photons∑
i

wi . xi

The Missing Quote
Von Neumann’s condition

Sources and Inspiration

Bill Dally :

 https://www.youtube.com/watch?v=fnd05AeeFN4

David Patterson/John Hennessy Turing Award Speed:

 https://www.youtube.com/watch?v=3LVeEjsn8Ts

Chris Lattner & al. , LLVM Dev Mtg (10 days ago):

 https://www.youtube.com/watch?v=SEwTjZvy8vw

