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Exercise Sheet 12 – Solutions

Exercise 1:

(a) Restricting smooth vector fields to submanifolds : Let M be a smooth manifold, let S
be an immersed submanifold of M , and let ι : S ↪→ M be the inclusion map. Prove
the following assertions:

(i) If Y ∈ X(M) and if there is X ∈ X(S) that is ι-related to Y , then Y ∈ X(M) is
tangent to S.

(ii) If Y ∈ X(M) is tangent to S, then there is a unique smooth vector field on S,
denote by Y |S, which is ι-related to Y .

[Hint: Determine first the candidate vector field on S and then use Theorem 5.6
and Proposition 5.16 to show that it is smooth.]

(b) Lie brackets of smooth vector fields tangent to submanifolds : Let M be a smooth
manifold and let S be an immersed submanifold ofM . If Y1 and Y2 are smooth vector
fields on M that are tangent to S, then show that their Lie bracket [Y1, Y2] is also
tangent to S.

Solution:

(a) Since X is ι-related to Y , it holds that Yp = dιp(Xp) for all p ∈ S, which means that
Yp ∈ TpS for all p ∈ S, i.e., Y is tangent to S.

(b) Since by hypothesis we have Yp ∈ dιp(TpS) for all p ∈ S, we may define a rough vector
field X : S → TS by requiring that, for any p ∈ S, Xp ∈ TpS is the unique vector such
that dιp(Xp) = Yp. By the injectivity of dιp, it is clear that X is unique, and that it is
ι-related to Y , so it remains to show that X is smooth. To this end, let p ∈ S be arbitrary.
By Proposition 5.16 there is an open neighborhood V of p in S such that V is embedded
in M . By Theorem 5.6 there exists a smooth chart

(
U, (xi)

)
for M such that V ∩ U is a

k-slice in U – we may assume that V ∩ U is the slice given by xk+1 = . . . = xn = 0 – and
(x1, . . . , xk) are local coordinates for S in V ∩ U Consider the coordinate representation

Y =
∑
i

Y i ∂

∂xi
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of Y on U . By Proposition 7.8 (evaluating the above expression at the coordinate function
xi with i > k) we infer that Y k+1 = . . . = Y n = 0 on V ∩ U , since Y is tangent to S.
Therefore,

X =
∑
1≤i≤k

Y i|U∩V
∂

∂xi

∣∣∣∣
U∩V

is the coordinate representation of X on V ∩ U , and each Y i|U∩V is smooth by part (a)
of Exercise 5, Sheet 8, so X is smooth on U ∩ V , and we are done.

(Let us now verify for completeness that

X
?
=

∑
1≤i≤k

Y i|U∩V
∂

∂xi

∣∣∣∣
U∩V

is the coordinate representation of X on V ∩ U . Let f ∈ C∞(U ∩ V ) be arbitrary, and
consider the function

F := f ◦ ψ−1 ◦ π ◦ φ : U → R,

where φ = (x1, . . . , xn), ψ = (x1, . . . , xk)|U∩V and π : Rn → Rk is the projection onto
the first k coordinates. Then F is smooth, as φ and ψ are smooth charts for M and V ,
respectively, and furthermore F ◦ ι = f , i.e., F is an extension of f to U . We have

Xp(f) = Xp(F ◦ ι) = dιp(Xp)(F ) = Yp(F ) =
∑
1≤i≤k

Y i(p)
∂F

∂xi
(p).

Now (you should convince yourself that) for all 1 ≤ i ≤ k we have

∂F

∂xi
(p) =

∂f

∂xi
(p),

and thus

Xp(f) =
∑
1≤i≤k

Y i|U∩V (p)
∂f

∂xi
(p)

for any p ∈ U ∩ V and any f defined on a neighborhood of p in M .)

Exercise 2: Let V be a smooth vector field on a smooth manifold M , let J ⊆ R be an
interval, and let γ : J →M be an integral curve of V . Prove the following assertions:

(a) Rescaling lemma: For any a ∈ R, the curve

γ̃ : J̃ →M, t 7→ γ(at)

is an integral curve of the vector field Ṽ := aV on M , where J̃ := {t ∈ R | at ∈ J}.

(b) Translation lemma: For any b ∈ R, the curve

γ̂ : Ĵ →M, t 7→ γ(t+ b)

is also an integral curve of V on M , where Ĵ := {t ∈ R | t+ b ∈ J}.

2



Solution:

(a) If t ∈ J̃ , then

γ̃′(t) = aγ′(at) = aVγ(at) = Ṽγ̃(t).

(b) If t ∈ Ĵ , then
γ̂′(t) = γ′(t+ b) = Vγ(t+b) = Vγ̂(t).

Exercise 3:

(a) Compute the Lie bracket [X, Y ] of each of the following pairs of smooth vector fields
X and Y on R3:

(i) X = y
∂

∂z
− 2xy2

∂

∂y
and Y =

∂

∂y
.

(ii) X = −y ∂

∂x
+ x

∂

∂y
and Y = −z ∂

∂y
+ y

∂

∂z
.

(b) Compute the flow of each of the following smooth vector fields on R2:

(i) V = x
∂

∂x
+ 2y

∂

∂y
.

(ii) W = x
∂

∂x
− y

∂

∂y
.

Solution:

(a) In case (i), writing

X = 0
∂

∂x
− 2xy2

∂

∂y
+ y

∂

∂z

and

Y = 0
∂

∂x
+ 1

∂

∂x
+ 0

∂

∂z
,

by invoking part (a) of Exercise 5, Sheet 11 we compute that

[X, Y ] = 4xy
∂

∂y
− ∂

∂z
.

In case (ii), we similarly obtain

[X, Y ] = −z ∂

∂x
+ x

∂

∂z
.

(b) We first deal with (i); we argue exactly as in the solution to part (c) of Exercise 3,
Sheet 11. Observe first that the unique maximal integral curve of V starting at p = (0, 0)
is the constant curve γ0 : R → R2, t 7→ (0, 0); see Exercise 6(a). Now, if γ : J → R2 is a
smooth curve, written in standard coordinates as γ(t) =

(
γ1(t), γ2(t)

)
, then the condition

γ′(t) = Vγ(t) for γ to be an integral curve of V translates to

γ̇ 1(t) = γ1(t),

γ̇ 2(t) = 2γ2(t).
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Therefore, there are constants c1, c2 ∈ R such that

γ1 : J = R → R, γ1(t) = c1e
t,

γ2 : J = R → R, γ2(t) = c1e
2t,

so the unique maximal integral curve of V starting at p = (p1, p2) ∈ R2 is the smooth curve
γ : R → R2, t 7→

(
p1et, p2e2t

)
, which in passing is a smooth immersion for p ∈ R2\{(0, 0)};

see Exercise 6(b). In conclusion, V is a complete vector field on R2 whose flow is the map

θV : R× R2 → R2,
(
t, (x, y)

)
7→

(
xet, ye2t

)
.

We now deal with (ii). Working as in (i), we find that the unique maximal integral
curve ofW starting at p = (p1, p2) ∈ R2 is the smooth curve γ : R → R2, t 7→

(
p1et, p2e−t

)
,

which is a smooth immersion for p ∈ R2 \ {(0, 0)}. Hence, the flow of the complete vector
field W is the map

θW : R× R2 → R2,
(
t, (x, y)

)
7→

(
xet, ye−t

)
.

Exercise 4: Let θ : R×M →M be a smooth global flow on a smooth manifoldM . Show
that the infinitesimal generator V of θ is a smooth vector field on M , and that each curve
θ(p) : R →M is an integral curve of V .

Solution: By definition of the infinitesimal generator, we have

Vp =
d

dt

∣∣∣∣
t=0

θ(t, p) for all p ∈M. (⋆)

First, to show that V is smooth, we apply Proposition 7.5 (c): Given an open subset
U of M , a smooth real-valued function f on U , and p ∈ U , we have

V f(p) = Vpf =

(
d

dt

∣∣∣∣
t=0

θ(t, p)

)
f

=
d

dt

∣∣∣∣
t=0

(f ◦ θ)(t, p) = ∂

∂t

∣∣∣∣
(0,p)

(f ◦ θ)(t, p).

Since the composite map f ◦ θ is smooth, its partial derivative with respect to t is smooth
as well. Thus, V f(p) depends smoothly on p, which implies that V is smooth.

Next, fix p ∈M and s ∈ R. We have to show that

d

dt

∣∣∣∣
t=s

θ(t, p) = Vθ(s,p)
(⋆)
=

d

dt

∣∣∣∣
t=0

θ
(
t, θ(s, p)

)
.

By definition of a flow, we have

θ(t+ s, p) = θ
(
t, θ(s, p)

)
,

and by first differentiating the above relation with respect to t and then evaluating at
t = 0 we obtain the required identity.
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Exercise 5:

(a) Naturality of flows : Let F : M → N be a smooth map. LetX ∈ X(M) and Y ∈ X(N).
Let θ be the flow of X and η be the flow of Y . Show that if X and Y are F -related,
then for each t ∈ R it holds that F (Mt) ⊆ Nt and ηt ◦ F = F ◦ θt on Mt:

Mt Nt

M−t N−t

θt

F

ηt

F

[Hint: Use part (e) of Exercise 4, Sheet 11.]

(b) Diffeomorphism invariance of flows : Let F : M → N be a diffeomorphism. If X ∈
X(M) and θ is the flow of X, then show that the flow of F∗X is ηt = F ◦ θt ◦ F−1,
with domain Nt = F (Mt) for each t ∈ R.

Solution:

(a) Denote by DX resp. DY the flow domain of θ resp. η. Fix t ∈ R and let p ∈ Mt.

Then t ∈ D(p)
X and θ(p) : D(p)

X → M is the unique maximal integral curve of X starting at
p. By part (e) of Exercise 4, Sheet 11, F ◦ θ(p) is an integral curve of Y starting at F (p).

Hence, by maximality, we obtain that D(p)
X ⊆ D(F (p))

Y , and thus t ∈ D(F (p))
Y , which shows

that F (p) ∈ Nt. In conclusion, F (Mt) ⊆ Nt. Finally, we have

F ◦ θt(p) = F
(
θ(t, p)

) (∗)
= η

(
t, F (p)

)
= ηt ◦ F (p),

where in (∗) we again used that F ◦ θ(p) is an integral curve of Y starting at F (p) and
thus it is equal to η(F (p)) where its defined (this uses the uniqueness part in the theorem
about solutions to a system of ODEs).

(b) Denote by η the flow of F∗X. Applying part (a) to both F and F−1 we obtain that
F (Mt) ⊆ Nt and F

−1(Nt) ⊆ Mt, so that F (Mt) = Nt. Furthermore, the commutativity
of the above diagram shows that ηt = F ◦ θt ◦ F−1 for all t ∈ R.

Exercise 6: Let V be a smooth vector field on a smooth manifold M and let θ : D →M
be the flow generated by V . Prove the following assertions:

(a) If p ∈ M is a singular point of V , then D(p) = R and θ(p) is the constant curve
θ(p)(t) ≡ p.

(b) If p ∈M is a regular point of V , then θ(p) : D(p) →M is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.]

Solution:

(a) If Vp = 0, then the constant curve γ : R →M, t 7→ p is clearly an integral curve of V ,
so it must be equal to θ(p) by uniqueness and maximality.
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(b) Assume that θ(p) : D(p) → M is not a smooth immersion. Then θ(p)′(s) = 0 for some
s ∈ D(p). Set q := θ(p)(s) and note that Vq = 0, since θ(p) is an integral curve of V . Thus,
q is a singular point of V , and by part (a) we infer that D(q) = R and that θ(q) is the
constant curve θ(q)(t) ≡ q. It follows from Theorem 7.14 (b) that D(p) = R as well, and
for all t ∈ R the group law gives

θ(p)(t) = θt(p) = θt−s

(
θ(s, p)

)
= θt−s(q) = q.

For t = 0 we obtain q = θ(p)(0) = p, and hence θ(p)(t) ≡ p and Vp = θ(p)′(0) = 0, which
contradicts the assumption that p is a regular point of V . This finishes the proof of (b).
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