

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 12 – Solutions

Exercise 1:

- (a) Restricting smooth vector fields to submanifolds: Let M be a smooth manifold, let S be an immersed submanifold of M, and let $\iota: S \hookrightarrow M$ be the inclusion map. Prove the following assertions:
 - (i) If $Y \in \mathfrak{X}(M)$ and if there is $X \in \mathfrak{X}(S)$ that is ι -related to Y, then $Y \in \mathfrak{X}(M)$ is tangent to S.
 - (ii) If Y ∈ X(M) is tangent to S, then there is a unique smooth vector field on S, denote by Y|_S, which is *ι*-related to Y.
 [Hint: Determine first the candidate vector field on S and then use Theorem 5.6 and Proposition 5.16 to show that it is smooth.]
- (b) Lie brackets of smooth vector fields tangent to submanifolds: Let M be a smooth manifold and let S be an immersed submanifold of M. If Y_1 and Y_2 are smooth vector fields on M that are tangent to S, then show that their Lie bracket $[Y_1, Y_2]$ is also tangent to S.

Solution:

(a) Since X is ι -related to Y, it holds that $Y_p = d\iota_p(X_p)$ for all $p \in S$, which means that $Y_p \in T_pS$ for all $p \in S$, i.e., Y is tangent to S.

(b) Since by hypothesis we have $Y_p \in d\iota_p(T_pS)$ for all $p \in S$, we may define a rough vector field $X: S \to TS$ by requiring that, for any $p \in S$, $X_p \in T_pS$ is the unique vector such that $d\iota_p(X_p) = Y_p$. By the injectivity of $d\iota_p$, it is clear that X is unique, and that it is ι -related to Y, so it remains to show that X is smooth. To this end, let $p \in S$ be arbitrary. By *Proposition 5.16* there is an open neighborhood V of p in S such that V is embedded in M. By *Theorem 5.6* there exists a smooth chart $(U, (x^i))$ for M such that $V \cap U$ is a k-slice in U – we may assume that $V \cap U$ is the slice given by $x^{k+1} = \ldots = x^n = 0$ – and (x^1, \ldots, x^k) are local coordinates for S in $V \cap U$ Consider the coordinate representation

$$Y = \sum_i Y^i \frac{\partial}{\partial x^i}$$

of Y on U. By Proposition 7.8 (evaluating the above expression at the coordinate function x^i with i > k) we infer that $Y^{k+1} = \ldots = Y^n = 0$ on $V \cap U$, since Y is tangent to S. Therefore,

$$X = \sum_{1 \le i \le k} Y^i |_{U \cap V} \frac{\partial}{\partial x^i} \Big|_{U \cap V}$$

is the coordinate representation of X on $V \cap U$, and each $Y^i|_{U \cap V}$ is smooth by part (a) of *Exercise* 5, *Sheet* 8, so X is smooth on $U \cap V$, and we are done.

(Let us now verify for completeness that

$$X \stackrel{?}{=} \sum_{1 \le i \le k} Y^i \big|_{U \cap V} \frac{\partial}{\partial x^i} \Big|_{U \cap V}$$

is the coordinate representation of X on $V \cap U$. Let $f \in C^{\infty}(U \cap V)$ be arbitrary, and consider the function

$$F \coloneqq f \circ \psi^{-1} \circ \pi \circ \varphi \colon U \to \mathbb{R},$$

where $\varphi = (x^1, \ldots, x^n)$, $\psi = (x^1, \ldots, x^k)|_{U \cap V}$ and $\pi \colon \mathbb{R}^n \to \mathbb{R}^k$ is the projection onto the first k coordinates. Then F is smooth, as φ and ψ are smooth charts for M and V, respectively, and furthermore $F \circ \iota = f$, i.e., F is an extension of f to U. We have

$$X_p(f) = X_p(F \circ \iota) = d\iota_p(X_p)(F) = Y_p(F) = \sum_{1 \le i \le k} Y^i(p) \frac{\partial F}{\partial x^i}(p).$$

Now (you should convince yourself that) for all $1 \le i \le k$ we have

$$\frac{\partial F}{\partial x^i}(p) = \frac{\partial f}{\partial x^i}(p),$$

and thus

$$X_p(f) = \sum_{1 \le i \le k} Y^i|_{U \cap V}(p) \frac{\partial f}{\partial x^i}(p)$$

for any $p \in U \cap V$ and any f defined on a neighborhood of p in M.)

Exercise 2: Let V be a smooth vector field on a smooth manifold M, let $J \subseteq \mathbb{R}$ be an interval, and let $\gamma: J \to M$ be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any $a \in \mathbb{R}$, the curve

$$\widetilde{\gamma} \colon \widetilde{J} \to M, \ t \mapsto \gamma(at)$$

is an integral curve of the vector field $\widetilde{V} := aV$ on M, where $\widetilde{J} := \{t \in \mathbb{R} \mid at \in J\}$.

(b) Translation lemma: For any $b \in \mathbb{R}$, the curve

$$\widehat{\gamma} \colon \widehat{J} \to M, \ t \mapsto \gamma(t+b)$$

is also an integral curve of V on M, where $\widehat{J} := \{t \in \mathbb{R} \mid t+b \in J\}.$

Solution:

(a) If $t \in \widetilde{J}$, then

$$\widetilde{\gamma}'(t) = a\gamma'(at) = aV_{\gamma(at)} = \widetilde{V}_{\widetilde{\gamma}(t)}$$

(b) If $t \in \widehat{J}$, then

$$\widehat{\gamma}'(t) = \gamma'(t+b) = V_{\gamma(t+b)} = V_{\widehat{\gamma}(t)}.$$

Exercise 3:

(a) Compute the Lie bracket [X, Y] of each of the following pairs of smooth vector fields X and Y on \mathbb{R}^3 :

(i)
$$X = y \frac{\partial}{\partial z} - 2xy^2 \frac{\partial}{\partial y}$$
 and $Y = \frac{\partial}{\partial y}$.
(ii) $X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ and $Y = -z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$.

(b) Compute the flow of each of the following smooth vector fields on \mathbb{R}^2 :

(i)
$$V = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$$
.
(ii) $W = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$.

Solution:

(a) In case (i), writing

$$X = 0 \frac{\partial}{\partial x} - 2xy^2 \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$$

and

$$Y = 0\frac{\partial}{\partial x} + 1\frac{\partial}{\partial x} + 0\frac{\partial}{\partial z},$$

by invoking part (a) of *Exercise* 5, *Sheet* 11 we compute that

$$[X,Y] = 4xy\frac{\partial}{\partial y} - \frac{\partial}{\partial z}.$$

In case (ii), we similarly obtain

$$[X,Y] = -z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}.$$

(b) We first deal with (i); we argue exactly as in the solution to part (c) of *Exercise* 3, Sheet 11. Observe first that the unique maximal integral curve of V starting at p = (0,0)is the constant curve $\gamma_0 \colon \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (0,0)$; see *Exercise* 6(a). Now, if $\gamma \colon J \to \mathbb{R}^2$ is a smooth curve, written in standard coordinates as $\gamma(t) = (\gamma^1(t), \gamma^2(t))$, then the condition $\gamma'(t) = V_{\gamma(t)}$ for γ to be an integral curve of V translates to

$$\dot{\gamma}^{1}(t) = \gamma^{1}(t),$$

$$\dot{\gamma}^{2}(t) = 2\gamma^{2}(t).$$

Therefore, there are constants $c_1, c_2 \in \mathbb{R}$ such that

$$\gamma^1 \colon J = \mathbb{R} \to \mathbb{R}, \ \gamma^1(t) = c_1 e^t, \gamma^2 \colon J = \mathbb{R} \to \mathbb{R}, \ \gamma^2(t) = c_1 e^{2t},$$

so the unique maximal integral curve of V starting at $p = (p^1, p^2) \in \mathbb{R}^2$ is the smooth curve $\gamma \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto (p^1 e^t, p^2 e^{2t})$, which in passing is a smooth immersion for $p \in \mathbb{R}^2 \setminus \{(0, 0)\}$; see *Exercise* 6(b). In conclusion, V is a complete vector field on \mathbb{R}^2 whose flow is the map

$$\theta_V \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ (t, (x, y)) \mapsto (xe^t, ye^{2t}).$$

We now deal with (ii). Working as in (i), we find that the unique maximal integral curve of W starting at $p = (p^1, p^2) \in \mathbb{R}^2$ is the smooth curve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (p^1 e^t, p^2 e^{-t})$, which is a smooth immersion for $p \in \mathbb{R}^2 \setminus \{(0,0)\}$. Hence, the flow of the complete vector field W is the map

$$\theta_W \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ (t, (x, y)) \mapsto (xe^t, ye^{-t})$$

Exercise 4: Let $\theta \colon \mathbb{R} \times M \to M$ be a smooth global flow on a smooth manifold M. Show that the infinitesimal generator V of θ is a smooth vector field on M, and that each curve $\theta^{(p)} \colon \mathbb{R} \to M$ is an integral curve of V.

Solution: By definition of the infinitesimal generator, we have

$$V_p = \frac{d}{dt} \bigg|_{t=0} \theta(t, p) \text{ for all } p \in M.$$
(*)

First, to show that V is smooth, we apply *Proposition* 7.5(c): Given an open subset U of M, a smooth real-valued function f on U, and $p \in U$, we have

$$Vf(p) = V_p f = \left(\frac{d}{dt}\Big|_{t=0} \theta(t,p)\right) f$$
$$= \frac{d}{dt}\Big|_{t=0} (f \circ \theta)(t,p) = \frac{\partial}{\partial t}\Big|_{(0,p)} (f \circ \theta)(t,p).$$

Since the composite map $f \circ \theta$ is smooth, its partial derivative with respect to t is smooth as well. Thus, Vf(p) depends smoothly on p, which implies that V is smooth.

Next, fix $p \in M$ and $s \in \mathbb{R}$. We have to show that

$$\frac{d}{dt}\Big|_{t=s}\theta(t,p) = V_{\theta(s,p)} \stackrel{(\star)}{=} \frac{d}{dt}\Big|_{t=0}\theta(t,\theta(s,p)).$$

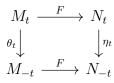
By definition of a flow, we have

$$\theta(t+s,p) = \theta(t,\theta(s,p)),$$

and by first differentiating the above relation with respect to t and then evaluating at t = 0 we obtain the required identity.

Exercise 5:

(a) Naturality of flows: Let $F: M \to N$ be a smooth map. Let $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. Let θ be the flow of X and η be the flow of Y. Show that if X and Y are F-related, then for each $t \in \mathbb{R}$ it holds that $F(M_t) \subseteq N_t$ and $\eta_t \circ F = F \circ \theta_t$ on M_t :



[Hint: Use part (e) of *Exercise* 4, *Sheet* 11.]

(b) Diffeomorphism invariance of flows: Let $F: M \to N$ be a diffeomorphism. If $X \in \mathfrak{X}(M)$ and θ is the flow of X, then show that the flow of F_*X is $\eta_t = F \circ \theta_t \circ F^{-1}$, with domain $N_t = F(M_t)$ for each $t \in \mathbb{R}$.

Solution:

(a) Denote by \mathcal{D}_X resp. \mathcal{D}_Y the flow domain of θ resp. η . Fix $t \in \mathbb{R}$ and let $p \in M_t$. Then $t \in \mathcal{D}_X^{(p)}$ and $\theta^{(p)} \colon \mathcal{D}_X^{(p)} \to M$ is the unique maximal integral curve of X starting at p. By part (e) of *Exercise* 4, *Sheet* 11, $F \circ \theta^{(p)}$ is an integral curve of Y starting at F(p). Hence, by maximality, we obtain that $\mathcal{D}_X^{(p)} \subseteq \mathcal{D}_Y^{(F(p))}$, and thus $t \in \mathcal{D}_Y^{(F(p))}$, which shows that $F(p) \in N_t$. In conclusion, $F(M_t) \subseteq N_t$. Finally, we have

$$F \circ \theta_t(p) = F(\theta(t,p)) \stackrel{(*)}{=} \eta(t,F(p)) = \eta_t \circ F(p),$$

where in (*) we again used that $F \circ \theta^{(p)}$ is an integral curve of Y starting at F(p) and thus it is equal to $\eta^{(F(p))}$ where its defined (this uses the uniqueness part in the theorem about solutions to a system of ODEs).

(b) Denote by η the flow of F_*X . Applying part (a) to both F and F^{-1} we obtain that $F(M_t) \subseteq N_t$ and $F^{-1}(N_t) \subseteq M_t$, so that $F(M_t) = N_t$. Furthermore, the commutativity of the above diagram shows that $\eta_t = F \circ \theta_t \circ F^{-1}$ for all $t \in \mathbb{R}$.

Exercise 6: Let V be a smooth vector field on a smooth manifold M and let $\theta \colon \mathfrak{D} \to M$ be the flow generated by V. Prove the following assertions:

- (a) If $p \in M$ is a singular point of V, then $\mathfrak{D}^{(p)} = \mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t) \equiv p$.
- (b) If $p \in M$ is a regular point of V, then $\theta^{(p)} \colon \mathfrak{D}^{(p)} \to M$ is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.]

Solution:

(a) If $V_p = 0$, then the constant curve $\gamma \colon \mathbb{R} \to M$, $t \mapsto p$ is clearly an integral curve of V, so it must be equal to $\theta^{(p)}$ by uniqueness and maximality.

(b) Assume that $\theta^{(p)}: \mathfrak{D}^{(p)} \to M$ is not a smooth immersion. Then $\theta^{(p)'}(s) = 0$ for some $s \in \mathfrak{D}^{(p)}$. Set $q := \theta^{(p)}(s)$ and note that $V_q = 0$, since $\theta^{(p)}$ is an integral curve of V. Thus, q is a singular point of V, and by part (a) we infer that $\mathfrak{D}^{(q)} = \mathbb{R}$ and that $\theta^{(q)}$ is the constant curve $\theta^{(q)}(t) \equiv q$. It follows from *Theorem 7.14* (b) that $\mathfrak{D}^{(p)} = \mathbb{R}$ as well, and for all $t \in \mathbb{R}$ the group law gives

$$\theta^{(p)}(t) = \theta_t(p) = \theta_{t-s}(\theta(s, p)) = \theta_{t-s}(q) = q.$$

For t = 0 we obtain $q = \theta^{(p)}(0) = p$, and hence $\theta^{(p)}(t) \equiv p$ and $V_p = \theta^{(p)'}(0) = 0$, which contradicts the assumption that p is a regular point of V. This finishes the proof of (b).