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Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 13 — Part I — Solutions

Exercise 1 (Smoothness criteria for covector fields): Let w: M — T*M be a rough
covector field on a smooth manifold M. Prove that the following assertions are equivalent:

(a) w is smooth.
(b) In every smooth coordinate chart the component functions of w are smooth.

(c) Every point of M is contained in some smooth coordinate chart in which w has smooth
component functions.

(d) For every smooth vector field X on M, the function w(X): M — R is smooth on M.

(e) For every open subset U C M and every smooth vector field X on U, the function
w(X): U — R is smooth on U.

[Hint: Try proving () = (b)) = (¢) = (a) and (¢) = (d) = (e) = (b)/]

Solution:

(a) = (b): Suppose that w is smooth. Let (U, (z*)) be a smooth chart for M. This
gives a corresponding smooth chart (7=*(U), ((z?), (&))) for T*M. It is characterized by
sending &', (where p € U) to ((2°(p)), (&)), where (\i,) is the dual basis of (9/9z"],).
By definition, the component functions of w with respect to the smooth chart (U, (af;z))
are the functions w;: U — R determined by

wp = _wi(p)- N,

for all p € U. Therefore, the coordinate representation w of w with respect to these charts
on U and 7 !(U) is the map

Since by hypothesis w, and thus also @, is smooth, we conclude that w; o =1, and thus
w; itself, is smooth.



(b) = (c): Immediate.

(¢) = (a): By hypothesis, there exists an atlas {(Ua, ¢a)}ta of M such that for all a,
the covector field w has smooth component functions. By the computation in (a) = (b),
this implies that the coordinate representation of w with respect to the smooth charts
(Ua, ¢a) and (771 (Us), (Pa, (€as)) is smooth. Hence, by part (b) of Ezercise 1, Sheet 3,
we conclude that w is smooth.

(c) = (d): Let {(Ua, ¥a)}a be an atlas for which w has smooth component functions
Wa,i, and write ¢, = (2¢,). Let X, ; be the component functions of X on U,, which are
smooth by Proposition 7.3. Then, for any p € U,, we have

w(X)(p) = Zzwaz Xaj |p (838 ) Zwal
#

=61

as by definition (\’|,) is the dual basis of (9/9z%|,). Since both w,,; and X, ; are smooth,
we infer that w(X)|y, is smooth. As {(Ua, ¢a)}a is an atlas for M, it follows from part
(a) of Exercise 2, Sheet 3 that w(X) is smooth.

(d) = (e): Let U be an open subset of M and let X be a smooth vector field on U.
Let p € U and let (U, ¢,) be a smooth chart for M containing p. Let V, C U, be the
preimage of a compact ball centered at ¢,(p), and let V,, be its interior. Let ¢,: M — R
be a smooth bump function with support in U, such that ¢p|v—p = 1. Then the map
YpX: M — TM defined by

(X)), = {wp() q iquU.’,

0 otherwise,

is a smooth global vector field; indeed, it is smooth on U and on M \ supp(¢,) (as it is
0 on this set), which is an open cover of M by construction. Hence, w(¢,X) is smooth
by assumption. But then w(X)[y, = w(¥,X)|y, is smooth as well. We conclude that
there is an open cover {V,},cy of U such that w(X)|y, is smooth for all p € U, and thus
w(X): U — R is smooth by part (a) of Ezercise 2, Sheet 3.

(e) = (b): Let (U, (z")) be a smooth chart for M and let w; be the component functions
of w with respect to this chart. By applying (e) to the smooth vector field 9/0x": U — R,
we infer that w(9/0x") is smooth. But since for any p € U we have

> = wi(p),

0
(89&’) ij Ny ((%i p
—_————

=6i;

and hence w(9/0z') = w;, we deduce that the component functions w’ of w on (U, (7))
are smooth.

Remark. The above arguments for (d) = (e) and (¢) = (b) yield in particular the
following: two (potentially rough) covector fields w,w’: M — T*M are equal if and only

if w(X) = w/'(X) for all smooth global vector fields X on M.
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Exercise 2 (Properties of the differential): Let M be a smooth manifold and let f,g €
C>°(M). Prove the following assertions:

(a) If a,b € R, then d(af + bg) = adf + bdg.

(b) d(fg) = fdg+gdf.

(c) d(f/g) = (gdf — fdg)/g* on the set where g # 0.
)

(d) If J C R is an interval containing the image of f and if h: J — R is a smooth
function, then d(ho f) = (k' o f)df.

(e) If f is constant, then df = 0. Conversely, if df = 0, then f is constant on each
connected component of M.

Solution:

(a) Fix a,b € R and p € M. For any v € T,,M we have

d(af +bg),(v) =v(af +bg) = av(f)+bv(g)
= adfy(v) + bdg,(v)
= (a df, + bdg,) (v).
Therefore,
d(af +bg), = adf, +bdgy,
which yields the statement, since p € M was arbitrary.

(b) Fix p € M. For any v € T,,M we have

d(fg)p(v) =v(fg) = f(p)vg +g(p)vf
= f(p) dgp(v) + g(p) dfp(v)
= (f(p)dg, + g(p) df,) (v).
Therefore,
d(fg)y = f(p)dg, + g(p) dfp,

which yields the statement, since p € M was arbitrary.

Note: We may also argue somewhat differently as follows (the same also applies for
(a) above, and this method will be used in (c¢) below as well): Let X be a smooth global
vector field on M. For any p € M we have

d(fg)(X)(p) = Xp(fg) = f(p) Xp(9) + 9(p) Xp(f) = (f dg)(X)(p) + (g df)(X)(p).

Therefore,
d(fg)(X) = (f dg)(X) + (9 df )(X)
for any smooth global vector field X, which yields the statement.
(c) Let U := M \ g7*(0). Let X be a smooth vector field on U. Given p € U, note that

0=X,(1) = X,(9- (1/9)) = 9(0)X,(1/9) + (1/9(p)) X, (9),



which yields
Xp(1/9) = =X,(9)/ (9(p)?).
Therefore,
d(1/9)(X)(p) = X,(1/9) = =X, (9)/ (9(p)*) = (—(dg)/9*)(X)(p)

for all X and p, which implies that d(1/g) = —(dg)/g*. Tt follows that

d(f/g) 2 (1/g)df + fd(1/g) = (1/g)df — (f/g*) dg = (gdf — f dg)/g",
as desired.

(d) Fix p € M and v € T,M. Write v = v*-%;| and note that

ozt lp
aii o )= 202D ) () ) = W (1)

f

by the chain rule. Therefore,

d(ho f)y(0) = ( —\) o )

— o'W (f(p) axl f=H(f)of

= (h"o f)(p) dfy(v )-

Since v € T,M was arbitrary, we infer that d(h o f), = (k' o f)(p) df,, and since p € M
was arbitrary, we conclude that d(ho f) = (b’ o f) df.

Note: We may alternatively argue as follows: Let X be a smooth global vector field
on M and let p € M be arbitrary. To avoid confusion, denote by df,: T,M — Ty,)R
the differential of f at p € M as a linear map between tangent spaces, and by d®Vf
the covector field determined by f. They are related as follows: for every p € M and
v € T,M, we have

d fyp(v) = [dfy(v)](Idg).

This follows from the fact that the natural identifaction of T, )R with R is provided by
evaluation at Idg. Therefore, if p € M and v € T,M are arbitrary, then we have

d*(ho f)p(v) = [d(h o f)y(v)](Idr) = [dhy) (dfs(v))] (Idr)
= (f(p)) - [dfy(v)](Idw) = B (f(p)) - d*" f,(v).

where we used that for any ¢ € J, the differential dh;: T;J — Tj,;)R is the map given by
scalar multiplication with h'(¢). As p € M and v € T,,M were arbitrary, we conclude that

d**(ho ) = (W o ) d'f.

(e) In view of the fact that the differential of f as defined in Chapter 3 (i.e., as a linear
map df,: T,M — T,R) and as defined in Chapter 8 (i.e., as a linear map df,: T,M — R)
is the same object (due to the canonical identification between R and T,R), the assertion
is simply a special case of part (b) of Ezercise 5, Sheet 5.
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Exercise 3:

(a) Derivative of a function along a curve: Let M be a smooth manifold, v: J — M be
a smooth curve, and f: M — R be a smooth function. Show that the derivative of
fovy:J— Ris given by

(f o) (t) = dfs (7'(2)).

(b) Let M be a smooth manifold and let f € C*°(M). Show that p € M is a critical
point of f if and only if df, = 0.

(c) Let M be a smooth manifold, let S be an immersed submanifold of M, and let
t: S < M be the inclusion map. For any f € C°°(M), show that d(f|s) = *(df).
Conclude that the pullback of df to S is zero if and only if f is constant on each
connected component of S.

Solution:

(a) Using the definitions, for any ¢ € J we have

d)(f)z%t

(/) =0 F = (5
Remark. Let M be a smooth manifold and let f € C(M). If 7 is a smooth curve in M,
then we have two different meanings for the expression (f o)'(¢). On the one hand, f o~y
can be interpreted as a smooth curve in R, and thus (f o v)(t) is its velocity (vector)
at the point (f o~)(t), which is an element of the tangent space T soy))R. Exercise 5,
Sheet 4 shows that this tangent vector is equal to df, (fy’ (t)), thought of as an element
of Tito)#»R. On the other hand, f oy can also be considered simply as a real-valued
function of one real variable, and then (f o~)'(¢) is just its ordinary derivative. Ezercise
3(a) shows that this derivative is equal to df,« (7/(¢)), thought of as a real number.

(fory)=(fo)(t)

(b) Since the differential df,, is a linear map with codomain the 1-dimensional R-vector
space T,R = R, it is surjective if and only if there exists v € T,M \ {0} such that
df,(v) € R\ {0} = T,R\ {0}. Therefore, p € M is a critical point of f if and only if df,,

is not surjective if and only if df, = 0 (i.e., the zero linear map).

(c) Since f|s = f o, by Proposition 8.11 we obtain

C(df) = d(f or) = d(fls)-

It follows from the above relation and from part (b) that *(df) = 0 if and only if f is
constant on each component of S.

Exercise 4:
(a) Consider the smooth map
F:R? = R? (s,t) > (st,e")
and the smooth covector field
w = zdy — ydv € X*(R?).

Compute F*w.



(b) Consider the function
iR =R, (2,y,2) = 2>+ + 22

and the map

2 2 2421
F:R2 5 R3 (u,v)»—>( 4 v.ooowdhv )

w42+ 1w+ 024+ 17 w24+ 02 41
(Note that F is the inverse of the stereographic projection from the north pole N € S

see Ezxercise 6, Sheet 2.) Compute F*(df) and d(f o F') separately, and verify that
they are equal.

(¢) Consider the smooth manifold
M = {(z,y) eR* |z > 0}

and the smooth function

X

fI M—)R, ([L‘,y)f—> m

Compute the coordinate representation for df and determine the set of all points
p € M at which df, = 0.

Solution:

(a) We have

Frw=(xoF)d(yoF)— (yoF)d(xzoF)
= (st)d(e") — (e') d(st)
= ste' dt — e'(sdt + tds)
= (—te')ds + se'(t — 1) dt.

(b) On the one hand, by Ezercise 2 we obtain

df = d(2® + y* + 2%) = 2z dx + 2y dy + 22 dz,

and since
2u 2(u? +v? 4+ 1) — 4u? —4up
d F)=d| ———| = d d
(zo F) <u2+02—|—1> (u? +v2 4 1)2 u+(u2+v2—|—1)2 v
20 —4up 2(u? + 02 +1) — 4?
d(yOF)_d<—u2+02+1)_—(u2+v2+1)2du+ (E 024 1) dv,
u? + 0% —1 4u 4
dzoF)—d(X v~y 2 g4y
(z0 F) <u2—|—vz—|—1) (u? +v2 4 1)2 u+(u2+v2—|—1)2 “



we compute that

F*df)=2(xo F)d(zoF)+2(yo F)d(yo F)+2(z0 F)d(z0 F)

_ 9 2u d 2u 49 2v d 2v n
ST+l w242+ 1 w42+ 1 \u2+0v2+1

w?+0v2 =1 <u2—|—v2—1)

2
+ uz + 0241 w2+ 02 +1

(8u(u? +v? + 1) — 16u®) — 16uv? + Su(u?® + v? — 1)
= du+
(U2 +U2 + 1)3
—16u?v + (8v(u? 4+ v* + 1) — 160%) + 8v(u? + v* — 1)
_l’_
(U2 02+ 1)3

dv

=0.

On the other hand, we have

2u 2 2v 2 u? +v? -1 2
Ja — S —_—
(fo F)(uv) (u2+v2+1> +(u2+v2+1) +<u2+'02+1)
—<U2+U2+1)2
=1,

whence d(f o F') = 0 according to Ezercise 2(e).

(c) Given a point p = (zo,y0) € M, the differential df, of f at p is represented in
coordinates (z,y) by the row matrix D, whose components are the partial derivatives of
f at p = (w0, yo); namely,

of of o M
D, = (%(xo,yo), 8_y(x0’y0)) = (($§+y80)27 (3 +v3)?)

In view of Ezercise 3(b), to find the points p € M at which df,, = 0, we have to solve
the system
2 _ 2
y*—x°=0
(2): B
—2z2y =0

under the restriction that x > 0. It is straightforward to check that (3) has no solutions
(z,y) € M; in other words,

{pe M|df,=0} =0.



