EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 13 - Part I - Solutions

Exercise 1 (Smoothness criteria for covector fields): Let $\omega: M \rightarrow T^{*} M$ be a rough covector field on a smooth manifold M. Prove that the following assertions are equivalent:
(a) ω is smooth.
(b) In every smooth coordinate chart the component functions of ω are smooth.
(c) Every point of M is contained in some smooth coordinate chart in which ω has smooth component functions.
(d) For every smooth vector field X on M, the function $\omega(X): M \rightarrow \mathbb{R}$ is smooth on M.
(e) For every open subset $U \subseteq M$ and every smooth vector field X on U, the function $\omega(X): U \rightarrow \mathbb{R}$ is smooth on U.
[Hint: Try proving $(a) \Longrightarrow(b) \Longrightarrow(c) \Longrightarrow(a)$ and $(c) \Longrightarrow(d) \Longrightarrow(e) \Longrightarrow(b)$.]

Solution:

(a) \Longrightarrow (b): Suppose that ω is smooth. Let $\left(U,\left(x^{i}\right)\right)$ be a smooth chart for M. This gives a corresponding smooth chart $\left(\pi^{-1}(U),\left(\left(x^{i}\right),\left(\xi_{i}\right)\right)\right)$ for $T^{*} M$. It is characterized by sending $\left.\xi_{i} \lambda^{i}\right|_{p}$ (where $p \in U$) to $\left(\left(x^{i}(p)\right),\left(\xi_{i}\right)\right)$, where $\left(\left.\lambda_{i}\right|_{p}\right)$ is the dual basis of $\left(\partial /\left.\partial x^{i}\right|_{p}\right)$. By definition, the component functions of ω with respect to the smooth chart $\left(U,\left(x^{i}\right)\right)$ are the functions $\omega_{i}: U \rightarrow \mathbb{R}$ determined by

$$
\omega_{p}=\left.\sum_{i} \omega_{i}(p) \cdot \lambda^{i}\right|_{p}
$$

for all $p \in U$. Therefore, the coordinate representation $\hat{\omega}$ of ω with respect to these charts on U and $\pi^{-1}(U)$ is the map

$$
\begin{aligned}
\hat{\omega}: \hat{U} & \rightarrow \hat{U} \times \mathbb{R}^{n} \\
\hat{x} & \mapsto\left(\hat{x},\left(\omega_{i} \circ \varphi^{-1}(\hat{x})\right)\right) .
\end{aligned}
$$

Since by hypothesis ω, and thus also $\hat{\omega}$, is smooth, we conclude that $\omega_{i} \circ \varphi^{-1}$, and thus ω_{i} itself, is smooth.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: Immediate.
(c) \Longrightarrow (a): By hypothesis, there exists an atlas $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha}$ of M such that for all α, the covector field ω has smooth component functions. By the computation in $(a) \Rightarrow(b)$, this implies that the coordinate representation of ω with respect to the smooth charts $\left(U_{\alpha}, \varphi_{\alpha}\right)$ and $\left(\pi^{-1}\left(U_{\alpha}\right),\left(\varphi_{\alpha},\left(\xi_{\alpha, i}\right)\right)\right.$ is smooth. Hence, by part (b) of Exercise 1, Sheet 3, we conclude that ω is smooth.
$(\mathrm{c}) \Longrightarrow(\mathrm{d})$: Let $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha}$ be an atlas for which ω has smooth component functions $\omega_{\alpha, i}$, and write $\varphi_{\alpha}=\left(x_{\alpha}^{i}\right)$. Let $X_{\alpha, i}$ be the component functions of X on U_{α}, which are smooth by Proposition 7.3. Then, for any $p \in U_{\alpha}$, we have

$$
\omega(X)(p)=\omega_{p}\left(X_{p}\right)=\sum_{i} \sum_{j} \omega_{\alpha, i}(p) X_{\alpha, j}(p) \underbrace{\left.\lambda^{i}\right|_{p}\left(\left.\frac{\partial}{\partial x_{\alpha}^{j}}\right|_{p}\right)}_{=\delta_{i j}}=\sum_{i} \omega_{\alpha, i}(p) X_{\alpha, i}(p),
$$

as by definition $\left(\left.\lambda^{i}\right|_{p}\right)$ is the dual basis of $\left(\partial /\left.\partial x_{\alpha}^{i}\right|_{p}\right)$. Since both $\omega_{\alpha, i}$ and $X_{\alpha, i}$ are smooth, we infer that $\left.\omega(X)\right|_{U_{\alpha}}$ is smooth. As $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha}$ is an atlas for M, it follows from part (a) of Exercise 2, Sheet 3 that $\omega(X)$ is smooth.
(d) \Longrightarrow (e): Let U be an open subset of M and let X be a smooth vector field on U. Let $p \in U$ and let $\left(U_{p}, \varphi_{p}\right)$ be a smooth chart for M containing p. Let $\overline{V_{p}} \subseteq U_{p}$ be the preimage of a compact ball centered at $\varphi_{p}(p)$, and let V_{p} be its interior. Let $\psi_{p}: M \rightarrow \mathbb{R}$ be a smooth bump function with support in U_{p} such that $\left.\psi_{p}\right|_{\overline{V_{p}}} \equiv 1$. Then the map $\psi_{p} X: M \rightarrow T M$ defined by

$$
\left(\psi_{p} X\right)_{q}=\left\{\begin{array}{cl}
\psi_{p}(q) X_{q} & \text { if } q \in U \\
0 & \text { otherwise }
\end{array}\right.
$$

is a smooth global vector field; indeed, it is smooth on U and on $M \backslash \operatorname{supp}\left(\psi_{p}\right)$ (as it is 0 on this set), which is an open cover of M by construction. Hence, $\omega\left(\psi_{p} X\right)$ is smooth by assumption. But then $\left.\omega(X)\right|_{V_{p}}=\left.\omega\left(\psi_{p} X\right)\right|_{V_{p}}$ is smooth as well. We conclude that there is an open cover $\left\{V_{p}\right\}_{p \in U}$ of U such that $\left.\omega(X)\right|_{V_{p}}$ is smooth for all $p \in U$, and thus $\omega(X): U \rightarrow \mathbb{R}$ is smooth by part (a) of Exercise 2 , Sheet 3 .
$(\mathrm{e}) \Longrightarrow(\mathrm{b}):$ Let $\left(U,\left(x^{i}\right)\right)$ be a smooth chart for M and let ω_{i} be the component functions of ω with respect to this chart. By applying (e) to the smooth vector field $\partial / \partial x^{i}: U \rightarrow \mathbb{R}$, we infer that $\omega\left(\partial / \partial x^{i}\right)$ is smooth. But since for any $p \in U$ we have

$$
\omega\left(\frac{\partial}{\partial x^{i}}\right)(p)=\sum_{j} \omega_{j}(p) \cdot \underbrace{\left.\lambda^{j}\right|_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)}_{=\delta_{i j}}=\omega_{i}(p),
$$

and hence $\omega\left(\partial / \partial x^{i}\right)=\omega_{i}$, we deduce that the component functions ω^{i} of ω on $\left(U,\left(x^{i}\right)\right)$ are smooth.

Remark. The above arguments for $(d) \Longrightarrow(e)$ and $(e) \Longrightarrow(b)$ yield in particular the following: two (potentially rough) covector fields $\omega, \omega^{\prime}: M \rightarrow T^{*} M$ are equal if and only if $\omega(X)=\omega^{\prime}(X)$ for all smooth global vector fields X on M.

Exercise 2 (Properties of the differential): Let M be a smooth manifold and let $f, g \in$ $C^{\infty}(M)$. Prove the following assertions:
(a) If $a, b \in \mathbb{R}$, then $d(a f+b g)=a d f+b d g$.
(b) $d(f g)=f d g+g d f$.
(c) $d(f / g)=(g d f-f d g) / g^{2}$ on the set where $g \neq 0$.
(d) If $J \subseteq \mathbb{R}$ is an interval containing the image of f and if $h: J \rightarrow \mathbb{R}$ is a smooth function, then $d(h \circ f)=\left(h^{\prime} \circ f\right) d f$.
(e) If f is constant, then $d f=0$. Conversely, if $d f=0$, then f is constant on each connected component of M.

Solution:

(a) Fix $a, b \in \mathbb{R}$ and $p \in M$. For any $v \in T_{p} M$ we have

$$
\begin{aligned}
d(a f+b g)_{p}(v) & =v(a f+b g)=a v(f)+b v(g) \\
& =a d f_{p}(v)+b d g_{p}(v) \\
& =\left(a d f_{p}+b d g_{p}\right)(v) .
\end{aligned}
$$

Therefore,

$$
d(a f+b g)_{p}=a d f_{p}+b d g_{p},
$$

which yields the statement, since $p \in M$ was arbitrary.
(b) Fix $p \in M$. For any $v \in T_{p} M$ we have

$$
\begin{aligned}
d(f g)_{p}(v) & =v(f g)=f(p) v g+g(p) v f \\
& =f(p) d g_{p}(v)+g(p) d f_{p}(v) \\
& =\left(f(p) d g_{p}+g(p) d f_{p}\right)(v) .
\end{aligned}
$$

Therefore,

$$
d(f g)_{p}=f(p) d g_{p}+g(p) d f_{p}
$$

which yields the statement, since $p \in M$ was arbitrary.
Note: We may also argue somewhat differently as follows (the same also applies for (a) above, and this method will be used in (c) below as well): Let X be a smooth global vector field on M. For any $p \in M$ we have

$$
d(f g)(X)(p)=X_{p}(f g)=f(p) X_{p}(g)+g(p) X_{p}(f)=(f d g)(X)(p)+(g d f)(X)(p)
$$

Therefore,

$$
d(f g)(X)=(f d g)(X)+(g d f)(X)
$$

for any smooth global vector field X, which yields the statement.
(c) Let $U:=M \backslash g^{-1}(0)$. Let X be a smooth vector field on U. Given $p \in U$, note that

$$
0=X_{p}(1)=X_{p}(g \cdot(1 / g))=g(p) X_{p}(1 / g)+(1 / g(p)) X_{p}(g),
$$

which yields

$$
X_{p}(1 / g)=-X_{p}(g) /\left(g(p)^{2}\right)
$$

Therefore,

$$
d(1 / g)(X)(p)=X_{p}(1 / g)=-X_{p}(g) /\left(g(p)^{2}\right)=\left(-(d g) / g^{2}\right)(X)(p)
$$

for all X and p, which implies that $d(1 / g)=-(d g) / g^{2}$. It follows that

$$
d(f / g) \stackrel{(b)}{=}(1 / g) d f+f d(1 / g)=(1 / g) d f-\left(f / g^{2}\right) d g=(g d f-f d g) / g^{2}
$$

as desired.
(d) Fix $p \in M$ and $v \in T_{p} M$. Write $v=\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$ and note that

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p}(h \circ f)=\frac{\partial(h \circ f)}{\partial x^{i}}(p)=h^{\prime}(f(p)) \frac{\partial f}{\partial x^{i}}(p)=\left.h^{\prime}(f(p)) \frac{\partial}{\partial x^{i}}\right|_{p} f
$$

by the chain rule. Therefore,

$$
\begin{aligned}
d(h \circ f)_{p}(v) & =v(h \circ f)=\left(\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right)(h \circ f) \\
& =\left.v^{i} h^{\prime}(f(p)) \frac{\partial}{\partial x^{i}}\right|_{p} f=h^{\prime}(f(p)) v f \\
& =\left(h^{\prime} \circ f\right)(p) d f_{p}(v) .
\end{aligned}
$$

Since $v \in T_{p} M$ was arbitrary, we infer that $d(h \circ f)_{p}=\left(h^{\prime} \circ f\right)(p) d f_{p}$, and since $p \in M$ was arbitrary, we conclude that $d(h \circ f)=\left(h^{\prime} \circ f\right) d f$.

Note: We may alternatively argue as follows: Let X be a smooth global vector field on M and let $p \in M$ be arbitrary. To avoid confusion, denote by $d f_{p}: T_{p} M \rightarrow T_{f(p)} \mathbb{R}$ the differential of f at $p \in M$ as a linear map between tangent spaces, and by $d^{\text {cov }} f$ the covector field determined by f. They are related as follows: for every $p \in M$ and $v \in T_{p} M$, we have

$$
d^{\mathrm{cov}} f_{p}(v)=\left[d f_{p}(v)\right]\left(\operatorname{Id}_{\mathbb{R}}\right)
$$

This follows from the fact that the natural identifaction of $T_{f(p)} \mathbb{R}$ with \mathbb{R} is provided by evaluation at $\mathrm{Id}_{\mathbb{R}}$. Therefore, if $p \in M$ and $v \in T_{p} M$ are arbitrary, then we have

$$
\begin{aligned}
d^{\text {cov }}(h \circ f)_{p}(v) & =\left[d(h \circ f)_{p}(v)\right]\left(\operatorname{Id}_{\mathbb{R}}\right)=\left[d h_{f(p)}\left(d f_{p}(v)\right)\right]\left(\operatorname{Id}_{\mathbb{R}}\right) \\
& =h^{\prime}(f(p)) \cdot\left[d f_{p}(v)\right]\left(\operatorname{Id}_{\mathbb{R}}\right)=h^{\prime}(f(p)) \cdot d^{\operatorname{cov}} f_{p}(v),
\end{aligned}
$$

where we used that for any $t \in J$, the differential $d h_{t}: T_{t} J \rightarrow T_{h(t)} \mathbb{R}$ is the map given by scalar multiplication with $h^{\prime}(t)$. As $p \in M$ and $v \in T_{p} M$ were arbitrary, we conclude that $d^{\mathrm{cov}}(h \circ f)=\left(h^{\prime} \circ f\right) d^{\mathrm{cov}} f$.
(e) In view of the fact that the differential of f as defined in Chapter 3 (i.e., as a linear $\operatorname{map} d f_{p}: T_{p} M \rightarrow T_{p} \mathbb{R}$) and as defined in Chapter 8 (i.e., as a linear map $d f_{p}: T_{p} M \rightarrow \mathbb{R}$) is the same object (due to the canonical identification between \mathbb{R} and $T_{p} \mathbb{R}$), the assertion is simply a special case of part (b) of Exercise 5, Sheet 5.

Exercise 3:

(a) Derivative of a function along a curve: Let M be a smooth manifold, $\gamma: J \rightarrow M$ be a smooth curve, and $f: M \rightarrow \mathbb{R}$ be a smooth function. Show that the derivative of $f \circ \gamma: J \rightarrow \mathbb{R}$ is given by

$$
(f \circ \gamma)^{\prime}(t)=d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)
$$

(b) Let M be a smooth manifold and let $f \in C^{\infty}(M)$. Show that $p \in M$ is a critical point of f if and only if $d f_{p}=0$.
(c) Let M be a smooth manifold, let S be an immersed submanifold of M, and let $\iota: S \hookrightarrow M$ be the inclusion map. For any $f \in C^{\infty}(M)$, show that $d\left(\left.f\right|_{S}\right)=\iota^{*}(d f)$. Conclude that the pullback of $d f$ to S is zero if and only if f is constant on each connected component of S.

Solution:

(a) Using the definitions, for any $t \in J$ we have

$$
d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=\gamma^{\prime}(t) f=d \gamma\left(\left.\frac{d}{d t}\right|_{t}\right)(f)=\left.\frac{d}{d t}\right|_{t}(f \circ \gamma)=(f \circ \gamma)^{\prime}(t)
$$

Remark. Let M be a smooth manifold and let $f \in C^{\infty}(M)$. If γ is a smooth curve in M, then we have two different meanings for the expression $(f \circ \gamma)^{\prime}(t)$. On the one hand, $f \circ \gamma$ can be interpreted as a smooth curve in \mathbb{R}, and thus $(f \circ \gamma)^{\prime}(t)$ is its velocity (vector) at the point $(f \circ \gamma)(t)$, which is an element of the tangent space $T_{(f \circ \gamma)(t)} \mathbb{R}$. Exercise 5 , Sheet 4 shows that this tangent vector is equal to $d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)$, thought of as an element of $T_{(f \circ \gamma)(t)} \mathbb{R}$. On the other hand, $f \circ \gamma$ can also be considered simply as a real-valued function of one real variable, and then $(f \circ \gamma)^{\prime}(t)$ is just its ordinary derivative. Exercise 3 (a) shows that this derivative is equal to $d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)$, thought of as a real number.
(b) Since the differential $d f_{p}$ is a linear map with codomain the 1-dimensional \mathbb{R}-vector space $T_{p} \mathbb{R} \cong \mathbb{R}$, it is surjective if and only if there exists $v \in T_{p} M \backslash\{0\}$ such that $d f_{p}(v) \in \mathbb{R} \backslash\{0\} \cong T_{p} \mathbb{R} \backslash\{0\}$. Therefore, $p \in M$ is a critical point of f if and only if $d f_{p}$ is not surjective if and only if $d f_{p}=0$ (i.e., the zero linear map).
(c) Since $\left.f\right|_{S}=f \circ \iota$, by Proposition 8.11 we obtain

$$
\iota^{*}(d f)=d(f \circ \iota)=d\left(\left.f\right|_{S}\right) .
$$

It follows from the above relation and from part (b) that $\iota^{*}(d f)=0$ if and only if f is constant on each component of S.

Exercise 4:

(a) Consider the smooth map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(s, t) \mapsto\left(s t, e^{t}\right)
$$

and the smooth covector field

$$
\omega=x d y-y d x \in \mathfrak{X}^{*}\left(\mathbb{R}^{2}\right) .
$$

Compute $F^{*} \omega$.
(b) Consider the function

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto x^{2}+y^{2}+z^{2}
$$

and the map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) .
$$

(Note that F is the inverse of the stereographic projection from the north pole $N \in \mathbb{S}^{2}$; see Exercise 6, Sheet 2.) Compute $F^{*}(d f)$ and $d(f \circ F)$ separately, and verify that they are equal.
(c) Consider the smooth manifold

$$
M:=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}
$$

and the smooth function

$$
f: M \rightarrow \mathbb{R},(x, y) \mapsto \frac{x}{x^{2}+y^{2}}
$$

Compute the coordinate representation for $d f$ and determine the set of all points $p \in M$ at which $d f_{p}=0$.

Solution:

(a) We have

$$
\begin{aligned}
F^{*} \omega & =(x \circ F) d(y \circ F)-(y \circ F) d(x \circ F) \\
& =(s t) d\left(e^{t}\right)-\left(e^{t}\right) d(s t) \\
& =s t e^{t} d t-e^{t}(s d t+t d s) \\
& =\left(-t e^{t}\right) d s+s e^{t}(t-1) d t .
\end{aligned}
$$

(b) On the one hand, by Exercise 2 we obtain

$$
d f=d\left(x^{2}+y^{2}+z^{2}\right)=2 x d x+2 y d y+2 z d z
$$

and since

$$
\begin{aligned}
& d(x \circ F)=d\left(\frac{2 u}{u^{2}+v^{2}+1}\right)=\frac{2\left(u^{2}+v^{2}+1\right)-4 u^{2}}{\left(u^{2}+v^{2}+1\right)^{2}} d u+\frac{-4 u v}{\left(u^{2}+v^{2}+1\right)^{2}} d v, \\
& d(y \circ F)=d\left(\frac{2 v}{u^{2}+v^{2}+1}\right)=\frac{-4 u v}{\left(u^{2}+v^{2}+1\right)^{2}} d u+\frac{2\left(u^{2}+v^{2}+1\right)-4 v^{2}}{\left(u^{2}+v^{2}+1\right)^{2}} d v, \\
& d(z \circ F)=d\left(\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)=\frac{4 u}{\left(u^{2}+v^{2}+1\right)^{2}} d u+\frac{4 v}{\left(u^{2}+v^{2}+1\right)^{2}} d v,
\end{aligned}
$$

we compute that

$$
\begin{aligned}
F^{*}(d f)= & 2(x \circ F) d(x \circ F)+2(y \circ F) d(y \circ F)+2(z \circ F) d(z \circ F) \\
= & 2 \frac{2 u}{u^{2}+v^{2}+1} d\left(\frac{2 u}{u^{2}+v^{2}+1}\right)+2 \frac{2 v}{u^{2}+v^{2}+1} d\left(\frac{2 v}{u^{2}+v^{2}+1}\right)+ \\
& +2 \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1} d\left(\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) \\
= & \frac{\left(8 u\left(u^{2}+v^{2}+1\right)-16 u^{3}\right)-16 u v^{2}+8 u\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{3}} d u+ \\
& +\frac{-16 u^{2} v+\left(8 v\left(u^{2}+v^{2}+1\right)-16 v^{3}\right)+8 v\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{3}} d v \\
= & 0 .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
(f \circ F)(u, v) & =\left(\frac{2 u}{u^{2}+v^{2}+1}\right)^{2}+\left(\frac{2 v}{u^{2}+v^{2}+1}\right)^{2}+\left(\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)^{2} \\
& =\frac{\left(u^{2}+v^{2}+1\right)^{2}}{\left(u^{2}+v^{2}+1\right)^{2}} \\
& =1,
\end{aligned}
$$

whence $d(f \circ F)=0$ according to Exercise 2(e).
(c) Given a point $p=\left(x_{0}, y_{0}\right) \in M$, the differential $d f_{p}$ of f at p is represented in coordinates (x, y) by the row matrix D_{p} whose components are the partial derivatives of f at $p=\left(x_{0}, y_{0}\right)$; namely,

$$
D_{p}=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)=\left(\frac{y_{0}^{2}-x_{0}^{2}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{2}}, \frac{-2 x_{0} y_{0}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{2}}\right) .
$$

In view of Exercise 3(b), to find the points $p \in M$ at which $d f_{p}=0$, we have to solve the system

$$
(\Sigma):\left\{\begin{array}{l}
y^{2}-x^{2}=0 \\
-2 x y=0
\end{array}\right.
$$

under the restriction that $x>0$. It is straightforward to check that (Σ) has no solutions $(x, y) \in M$; in other words,

$$
\left\{p \in M \mid d f_{p}=0\right\}=\emptyset
$$

