

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 12

Exercise 1:

- (a) Restricting smooth vector fields to submanifolds: Let M be a smooth manifold, let S be an immersed submanifold of M, and let $\iota: S \hookrightarrow M$ be the inclusion map. Prove the following assertions:
 - (i) If $Y \in \mathfrak{X}(M)$ and if there is $X \in \mathfrak{X}(S)$ that is *i*-related to Y, then $Y \in \mathfrak{X}(M)$ is tangent to S.
 - (ii) If Y ∈ 𝔅(M) is tangent to S, then there is a unique smooth vector field on S, denote by Y|_S, which is *ι*-related to Y.
 [Hint: Determine first the candidate vector field on S and then use *Theorem 5.6* and *Proposition 5.16* to show that it is smooth.]
- (b) Lie brackets of smooth vector fields tangent to submanifolds: Let M be a smooth manifold and let S be an immersed submanifold of M. If Y_1 and Y_2 are smooth vector fields on M that are tangent to S, then show that their Lie bracket $[Y_1, Y_2]$ is also tangent to S.

Exercise 2:

Let V be a smooth vector field on a smooth manifold M, let $J \subseteq \mathbb{R}$ be an interval, and let $\gamma: J \to M$ be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any $a \in \mathbb{R}$, the curve

$$\widetilde{\gamma} \colon \widetilde{J} \to M, \ t \mapsto \gamma(at)$$

is an integral curve of the vector field $\widetilde{V} := aV$ on M, where $\widetilde{J} := \{t \in \mathbb{R} \mid at \in J\}$.

(b) Translation lemma: For any $b \in \mathbb{R}$, the curve

$$\widehat{\gamma} \colon \widehat{J} \to M, \ t \mapsto \gamma(t+b)$$

is also an integral curve of V on M, where $\widehat{J} := \{t \in \mathbb{R} \mid t+b \in J\}.$

Exercise 3 (to be submitted by Friday, 15.12.2023, 20:00):

(a) Compute the Lie bracket [X, Y] of each of the following pairs of smooth vector fields X and Y on \mathbb{R}^3 :

(i)
$$X = y \frac{\partial}{\partial z} - 2xy^2 \frac{\partial}{\partial y}$$
 and $Y = \frac{\partial}{\partial y}$.
(ii) $X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ and $Y = -z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$

(b) Compute the flow of each of the following smooth vector fields on \mathbb{R}^2 :

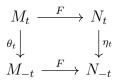
(i)
$$V = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$$
.
(ii) $W = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$.

Exercise 4:

Let $\theta \colon \mathbb{R} \times M \to M$ be a smooth global flow on a smooth manifold M. Show that the infinitesimal generator V of θ is a smooth vector field on M, and that each curve $\theta^{(p)} \colon \mathbb{R} \to M$ is an integral curve of V.

Exercise 5:

(a) Naturality of flows: Let $F: M \to N$ be a smooth map. Let $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. Let θ be the flow of X and η be the flow of Y. Show that if X and Y are F-related, then for each $t \in \mathbb{R}$ it holds that $F(M_t) \subseteq N_t$ and $\eta_t \circ F = F \circ \theta_t$ on M_t :



(b) Diffeomorphism invariance of flows: Let $F: M \to N$ be a diffeomorphism. If $X \in \mathfrak{X}(M)$ and θ is the flow of X, then show that the flow of F_*X is $\eta_t = F \circ \theta_t \circ F^{-1}$, with domain $N_t = F(M_t)$ for each $t \in \mathbb{R}$.

Definition. Let V be a (rough) vector field on a smooth manifold M. A point $p \in M$ is called a *singular point* of V if $V_p = 0 \in T_pM$; otherwise, it is called a *regular point* of V.

Exercise 6:

Let V be a smooth vector field on a smooth manifold M and let $\theta \colon \mathfrak{D} \to M$ be the flow generated by V. Prove the following assertions:

- (a) If $p \in M$ is a singular point of V, then $\mathfrak{D}^{(p)} = \mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t) \equiv p$.
- (b) If $p \in M$ is a regular point of V, then $\theta^{(p)} \colon \mathfrak{D}^{(p)} \to M$ is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.]