Midterm Solutions

Exercice 1. $(21+3$ points)

On the state space $S=\{0,1\}^{d}$, with $d \geq 2$ integer, consider the time-homogeneous Markov chain ($X_{n}, n \geq 0$) with the following behaviour:
At each time step $n \geq 0$, choose a number $i \in\{1, \ldots, d\}$ uniformly at random, and also independently of the numbers chosen at previous time steps; then assuming that $X_{n}=x$, set

$$
\left(X_{n+1}\right)_{i}= \begin{cases}0 & \text { with probability } \frac{|x|}{d} \tag{1}\\ 1 & \text { with probability } 1-\frac{|x|}{d}\end{cases}
$$

as well as $\left(X_{n+1}\right)_{j}=x_{j}$ for every $j \neq i$.
$N B$: Recall that $|x|$ stands for the number of 1's in the vector x.
a) Explain why the process $\left(X_{n}, n \geq 0\right)$ is a Markov chain (a short justification will do here).

Answer: In short, the steps performed by the process are indepedendent from each other, so the Markov property holds. In more detail, we have

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=y \mid X_{n}=x, X_{n-1}=x_{n-1}, \cdots, X_{0}=x_{0}\right)= \\
& \qquad \begin{array}{ll}
\frac{1}{d}\left(1-\frac{|x|}{d}\right)^{y_{i}}\left(\frac{|x|}{d}\right)^{1-y_{i}} & \text { if } x \text { and } y \text { differ only at the } i^{\text {th }} \text { coordinate } \\
\frac{1}{d} \sum_{i=1}^{d}\left(1-\frac{|x|}{d}\right)^{y_{i}}\left(\frac{|x|}{d}\right)^{1-y_{i}} & \text { if } y=x \\
0 & \text { otherwise }
\end{array}
\end{aligned}
$$

which depends only on x and y, and hence $\left(X_{n}, n \geq 0\right)$ is a Markov chain.
b) Do the states $x_{0}=(0,0, \ldots, 0)$ and $x_{1}=(1,1, \ldots, 1)$ communicate in this chain? Is the chain irreducible? Justify.

Answer: Yes, x_{0} and x_{1} communicate. The Markov chain is irreducible since any two states communicate with each other.
c) Is the chain aperiodic for any value of $d \geq 2$? Justify.

Answer: The chain is aperiodic for $d \geq 2$. This is since all the states except $x_{0}=(0,0, \ldots, 0)$ and $x_{1}=(1,1, \ldots, 1)$ have self-loops.

From now on, we restrict ourselves to the particular case $d=3$.
d) Write down explicitly the transition matrix P of the chain (it might perhaps be a good idea to also draw the transition graph, but this is not required here).

Answer: Considering the order (000), (001), (010), (011), (100), (101), (110), (111) for the states of S, we obtain

$$
P=\left(\begin{array}{cccccccc}
0 & 1 / 3 & 1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 \\
1 / 9 & 4 / 9 & 0 & 2 / 9 & 0 & 2 / 9 & 0 & 0 \\
1 / 9 & 0 & 4 / 9 & 2 / 9 & 0 & 0 & 2 / 9 & 0 \\
0 & 2 / 9 & 2 / 9 & 4 / 9 & 0 & 0 & 0 & 1 / 9 \\
1 / 9 & 0 & 0 & 0 & 4 / 9 & 2 / 9 & 2 / 9 & 0 \\
0 & 2 / 9 & 0 & 0 & 2 / 9 & 4 / 9 & 0 & 1 / 9 \\
0 & 0 & 2 / 9 & 0 & 2 / 9 & 0 & 4 / 9 & 1 / 9 \\
0 & 0 & 0 & 1 / 3 & 0 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

e) Compute the (unique) stationary distribution π of the chain. Does detailed balance hold?

Answer: Let's see if there exists a π that satisfies the detailed balance equation. We have

$$
\pi_{2}=\frac{p_{12}}{p_{21}} \pi_{1} \Longrightarrow \pi_{2}=3 \pi_{1}
$$

Similarly, we get

$$
\begin{aligned}
& \pi_{3}=3 \pi_{1} \\
& \pi_{4}=\pi_{2}=3 \pi_{1} \\
& \pi_{5}=3 \pi_{1} \\
& \pi_{6}=\pi_{2}=3 \pi_{1} \\
& \pi_{7}=\pi_{3}=3 \pi_{1} \\
& \pi_{8}=\pi_{4} / 3=\pi_{1}
\end{aligned}
$$

Imposing $\sum_{i} \pi_{i}=1$, we get $\pi_{1}=\frac{1}{20}$. Hence, $\pi=\frac{1}{20}(1,3,3,3,3,3,3,1)$ and the chain satisfies detailed balance.
f) Is π also a limiting distribution? Justify.

Answer: The given Markov chain is irreducible, positive-recurrent (due to finite state space), and aperiodic, therefore ergodic. Hence π is also the limiting distribution.

BONUS g) Explain what major change(s) would happen in the Markov chain $\left(X_{n}, n \geq 0\right)$ if we inverted the roles of 0 and 1 in equation (1).

Answer: There would be 3 equivalence classes: $\left\{x_{0}=(0,0, \ldots, 0)\right\}$, and $\left\{x_{1}=(1,1, \ldots, 1)\right\}$ that are recurrent and $\{0,1\}^{d} \backslash\left\{x_{0}, x_{1}\right\}$ which is transient.

Exercice 2. (17 points)

Let $\left(X_{n}, n \geq 0\right)$ be a Markov chain with state space $S=\{0,1,2,3\}$ and transition matrix P given by

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
a & b & b & 0 \\
0 & b & b & a \\
0 & 0 & 1 & 0
\end{array}\right)
$$

where the parameters $0 \leq a \leq 1$ and $0 \leq b \leq \frac{1}{2}$ are such that $a+2 b=1$.
a) For what values of a is the chain ($X_{n}, n \geq 0$) ergodic? Justify.

Answer: The chain is ergodic for $a \in(0,1)$. For $a \in\{0,1\}$, the chain is reducible.
b) Compute the unique limiting and stationary distribution π of the chain in this case.

Answer: \quad Solving $\pi=\pi P$ and using $a+2 b=1$, we get $\pi=\frac{1}{2(1+a)}(a, 1,1, a)$.
c) Compute the eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ of the matrix P.

Hint: Look for eigenvectors of the form (u, v, v, u) and $(u, v,-v,-u)$.
Answer: We have

$$
P\left(\begin{array}{l}
u \\
v \\
v \\
u
\end{array}\right)=\left(\begin{array}{c}
v \\
a u+2 b v \\
a u+2 b v \\
v
\end{array}\right)=\frac{v}{u}\left(\begin{array}{c}
u \\
u(a u / v+2 b) \\
u(a u / v+2 b) \\
u
\end{array}\right) .
$$

Hence $(u, v, v, u)^{T}$ is an eigenvector for u, v such that $\frac{u}{v}\left(a \frac{u}{v}+2 b\right)=1$ which is satisfied for $u=v$ and $v=-a u$. Corresponding eigenvalues are 1 and $-a$. Also, we have

$$
P\left(\begin{array}{c}
u \\
v \\
-v \\
-u
\end{array}\right)=\left(\begin{array}{c}
v \\
a u \\
-a u \\
-v
\end{array}\right)=\frac{v}{u}\left(\begin{array}{c}
u \\
a u^{2} / v \\
-a u^{2} / v \\
-u
\end{array}\right) .
$$

Hence $[u, v,-v,-u]^{T}$ is an eigenvector for u, v such that $\frac{a u^{2}}{v}=v$ which is satisfied for $v= \pm \sqrt{a} u$. Corresponding eigenvalues are $\pm \sqrt{a}$. Therefore the eigenvalues of P are $1 \geq \sqrt{a} \geq-a \geq-\sqrt{a}$.
d) Express the spectral gap γ of the chain as a function of the parameter a.

Answer: Since $a \in[0,1]$, we have $\lambda_{*}=\max \left\{\lambda_{1},-\lambda_{3}\right\}=\sqrt{a}$. Hence the spectral gap $\gamma=1-\sqrt{a}$.
e) Is there a way to increase the spectral gap γ by making the chain lazy (i.e., adding self-loops of equal weight to each state)? Justify.

Answer: Let us add self loops of strength $\alpha \in(0,1)$ to each state. Then, the new transition probability matrix is $\alpha I+(1-\alpha) P$ whose eigenvalues are $1, \quad \alpha+(1-\alpha) \sqrt{a}, \quad \alpha+(1-\alpha) a, \quad \alpha-$ $(1-\alpha) \sqrt{a}$. The eigenvalue $\alpha+(1-\alpha) \sqrt{a}$ is between \sqrt{a} and 1 for any α. Hence we can only reduce the spectral gap.

Exercise 3. (12 points)

Let $\left(X_{n}, n \in \mathbb{N}\right)$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=$ $\mathbb{P}\left(X_{n}=2\right)=\frac{1}{3}$ for every $n \geq 0$.
a) Let $\left(Y_{n}, n \in \mathbb{N}\right)$ be the process defined as

$$
Y_{n}=\prod_{j=0}^{n} X_{j}, \quad n \geq 0
$$

Explain why $\left(Y_{n}, n \in \mathbb{N}\right)$ is a Markov chain. Is it time-homogeneous?
Answer: We have

$$
\begin{aligned}
\mathbb{P}\left(Y_{n+1}=j \mid Y_{n}=i, Y_{n-1}=y_{n-1}, \ldots, Y_{0}=y_{0}\right) & =\mathbb{P}\left(\prod_{l=0}^{n+1} X_{l}=j \mid \prod_{l=0}^{n} X_{l}=i, Y_{n-1}=y_{n-1}, \ldots, Y_{0}=y_{0}\right) \\
& =\mathbb{P}\left(X_{n+1}=j / i \mid \prod_{l=0}^{n} X_{l}=i, Y_{n-1}=y_{n-1}, \ldots, Y_{0}=y_{0}\right) \\
& =\mathbb{P}\left(X_{n+1}=j / i\right)
\end{aligned}
$$

Therefore $\left(Y_{n}, n \in \mathbb{N}\right)$ is a time-homogenous Markov chain.
b) What is the state space S of the chain $\left(Y_{n}, n \in \mathbb{N}\right)$? And which states are recurrent/transient?

Answer: The state space of $\left(Y_{n}, n \in \mathbb{N}\right)$ is $S=\left\{2^{n}: n \in \mathbb{N}\right\} \cup\{0\}$. State 0 is recurrent. All other states are transient.
c) Let now $\left(Z_{n}, n \in \mathbb{N}\right)$ be the process defined as

$$
Z_{n}=\max _{0 \leq j \leq n} Y_{j}, \quad n \geq 0
$$

Is ($Z_{n}, n \in \mathbb{N}$) also a Markov chain? Is it time-homogeneous? Justify.
Answer: $\left(Z_{n}, n \in \mathbb{N}\right)$ is not a Markov chain. Consider the sample paths that can make $Z_{1}=2$. They are $\left(X_{0}, X_{1}\right) \in\{(1,2),(2,1),(2,0)\}$. The corresponding values of $\left(Z_{0}, Z_{1}\right)$ are $(1,2),(2,2),(2,2)$. Hence we have

$$
\mathbb{P}\left(Z_{2}=2 \mid Z_{1}=2\right)=7 / 9 \quad \text { and } \quad \mathbb{P}\left(Z_{2}=4 \mid Z_{1}=2\right)=2 / 9
$$

while

$$
\mathbb{P}\left(Z_{2}=2 \mid Z_{1}=2, Z_{0}=1\right)=2 / 3 \quad \text { and } \quad \mathbb{P}\left(Z_{2}=4 \mid Z_{1}=2, Z_{0}=1\right)=1 / 3
$$

Therefore, $\left(Z_{n}, n \in \mathbb{N}\right)$ is not a Markov chain (and therefore neither time-homogeneous).

