Midterm Exam

Exercice 1. $(21+3$ points)

On the state space $S=\{0,1\}^{d}$, with $d \geq 2$ integer, consider the time-homogeneous Markov chain ($X_{n}, n \geq 0$) with the following behaviour:
At each time step $n \geq 0$, choose a number $i \in\{1, \ldots, d\}$ uniformly at random, and also independently of the numbers chosen at previous time steps; then assuming that $X_{n}=x$, set

$$
\left(X_{n+1}\right)_{i}= \begin{cases}0 & \text { with probability } \frac{|x|}{d} \tag{1}\\ 1 & \text { with probability } 1-\frac{|x|}{d}\end{cases}
$$

as well as $\left(X_{n+1}\right)_{j}=x_{j}$ for every $j \neq i$.
$N B$: Recall that $|x|$ stands for the number of 1's in the vector x.
a) Explain why the process $\left(X_{n}, n \geq 0\right)$ is a Markov chain (a short justification will do here).
b) Do the states $x_{0}=(0,0, \ldots, 0)$ and $x_{1}=(1,1, \ldots, 1)$ communicate in this chain? Is the chain irreducible? Justify.
c) Is the chain aperiodic for any value of $d \geq 2$? Justify.

From now on, we restrict ourselves to the particular case $d=3$.
d) Write down explicitly the transition matrix P of the chain (it might perhaps be a good idea to also draw the transition graph, but this is not required here).
e) Compute the (unique) stationary distribution π of the chain. Does detailed balance hold?
f) Is π also a limiting distribution? Justify.

BONUS g) Explain what major change(s) would happen in the Markov chain $\left(X_{n}, n \geq 0\right)$ if we inverted the roles of 0 and 1 in equation (1).

Exercice 2. (17 points)

Let $\left(X_{n}, n \geq 0\right)$ be a Markov chain with state space $S=\{0,1,2,3\}$ and transition matrix P given by

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
a & b & b & 0 \\
0 & b & b & a \\
0 & 0 & 1 & 0
\end{array}\right)
$$

where the parameters $0 \leq a \leq 1$ and $0 \leq b \leq \frac{1}{2}$ are such that $a+2 b=1$.
a) For what values of a is the chain ($X_{n}, n \geq 0$) ergodic? Justify.
b) Compute the unique limiting and stationary distribution π of the chain in this case.
c) Compute the eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ of the matrix P.

Hint: Look for eigenvectors of the form (u, v, v, u) and $(u, v,-v,-u)$.
d) Express the spectral gap γ of the chain as a function of the parameter a.
e) Is there a way to increase the spectral gap γ by making the chain lazy (i.e., adding self-loops of equal weight to each state)? Justify.

Exercise 3. (12 points)

Let $\left(X_{n}, n \in \mathbb{N}\right)$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=$ $\mathbb{P}\left(X_{n}=2\right)=\frac{1}{3}$ for every $n \geq 0$.
a) Let $\left(Y_{n}, n \in \mathbb{N}\right)$ be the process defined as

$$
Y_{n}=\prod_{j=0}^{n} X_{j}, \quad n \geq 0
$$

Explain why $\left(Y_{n}, n \in \mathbb{N}\right)$ is a Markov chain. Is it time-homogeneous?
b) What is the state space S of the chain $\left(Y_{n}, n \in \mathbb{N}\right)$? And which states are recurrent/transient?
c) Let now $\left(Z_{n}, n \in \mathbb{N}\right)$ be the process defined as

$$
Z_{n}=\max _{0 \leq j \leq n} Y_{j}, \quad n \geq 0
$$

Is ($Z_{n}, n \in \mathbb{N}$) also a Markov chain? Is it time-homogeneous? Justify.

