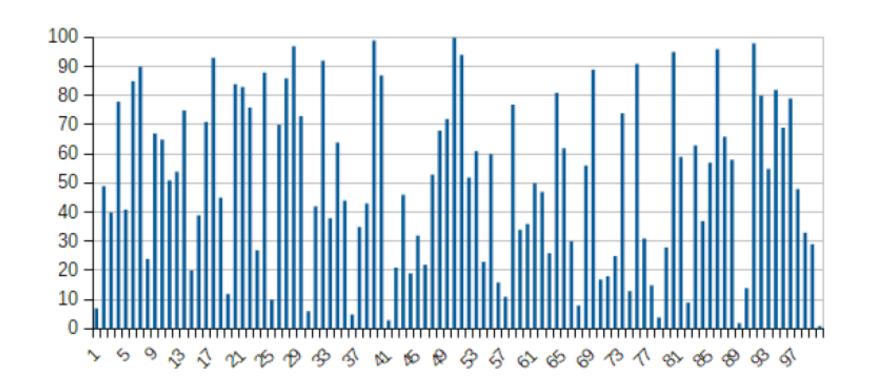
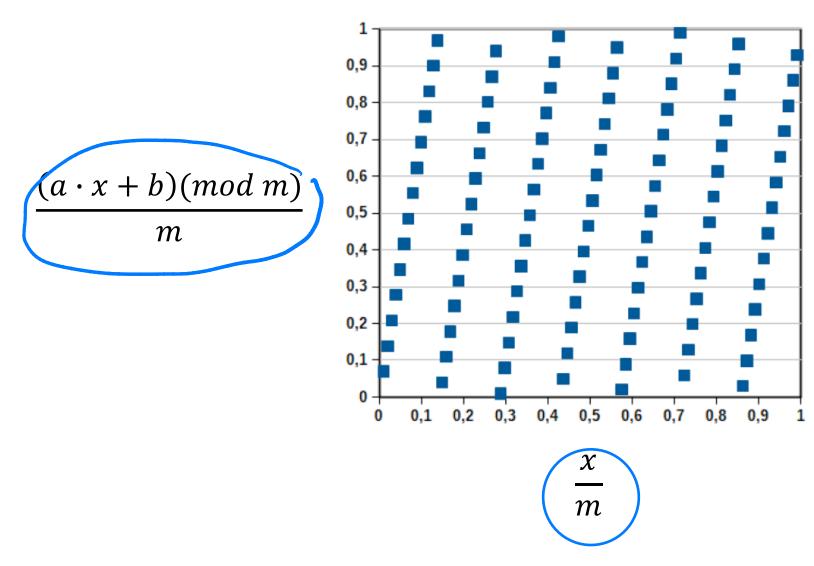
Génération de nombres aléatoires (→ recherche de nombres premiers)

Cours Turing – Semaine 9


Génération de nombres aléatoires Premier essai: la méthode des "carrés tronqués"

$$\times \rightarrow \times^{2} \rightarrow 7$$
 quotient
 $\leq U = \times // (10 * * 4)$
 $\leq Y = U \% (10 * * 8)$
 $\leq Woodulo$
 $\leq 2 = 3456278436174211$

Deuxième essai: les "génerateurs à congruence linéaire"


paramètres a, b et m $x \mapsto (ax+b) \pmod{m} = 4$:= reste de la division euclidienne de ax+b par m E\{20..m-1\} Ex: 101 (mod 7) = 3 Car 101 = 7.14+3

Générateurs à congruence linéaire

$$M=101$$
, $\alpha=7$, $b=0$, $x=1$ (depart)

Générateurs à congruence linéaire

Conversions

$$x = 37 = 32 + 4 + 1$$

 $x = 37 = 37 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 4 + 1$
 $x = 37 = 32 + 1$
 $x = 37 = 32$

32 = 2.16+5.1

Opérations binaires sur des nombres entiers

XOR: XNY = OMBOMO

Algorithme Xorshift

preliminaire:
$$\infty < < 3$$

$$= \text{vnult. par 8}$$

$$\infty < < 3 = 11010000$$

$$\infty < > 2 >> 3 = 11010000$$

$$\infty < > 2 >> 3 = 11010000$$

$$\infty < > 3 >> 3 = 11010000$$

$$\infty < > 4 >> 3 = 11010000$$

$$\infty < > 4 >> 3 = 11010000$$

$$\infty < > 4 >> 3 = 11010000$$

$$\infty < > 5 = 11010000$$

$$\infty < > 6 = 11010000$$

$$\infty < > 7 >> 3 = 11010000$$

$$\infty < > 8 = 110100000$$

$$\infty < > 8 = 11010000$$

$$\infty < > 8 = 11010000$$

$$\infty < > 8 = 110100000$$

Xorshift: (Sur 32 bits) (x) -> x 1 (x << 13) = 4 y -> 4 1 (4 >> 17) = 3 Z -> Z / (Z ((5) =(x)) 11 à diaque étape, on ne doit considerer

que les 32 premiers du nantre

× représente sur plus que 32 bits _> X & obunnumunimus._ cu × 2 0x fffffff alternativement: × % (2**52)

Autres méthodes

Mersenne twister

• Théorie du chaos

Bruit atmosphérique

Polarisation des photos

randan. org