

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 9 – Solutions

Exercise 1: Let M be a smooth manifold and let S be an immersed submanifold of M. Show that if any of the following conditions hold, then S is actually an embedded submanifold of M.

- (a) The codimension of S in M is zero.
- (b) The inclusion map $\iota \colon S \hookrightarrow M$ is proper.
- (c) S is compact.

Solution: Since S is an immersed submanifold of M, the inclusion map $\iota: S \hookrightarrow M$ is an injective smooth immersion. If any of the above conditions holds, then *Proposition* 4.6 implies that ι is a smooth embedding; in particular, $\iota(S) = S$ is endowed with the subspace topology inherited from M. Therefore, in any of these three cases, S is an embedded submanifold of M.

Exercise 2: Let M be a smooth manifold. Show that if S is an immersed submanifold of M, then for the given topology on S, there exists a unique smooth structure on S such that the inclusion map $S \hookrightarrow M$ is a smooth immersion.

[Hint: Use part (b) of *Exercise* 5, *Sheet* 8.]

Solution: Denote by ι the inclusion map $S \hookrightarrow M$ of the immersed submanifold S of M and by \widetilde{S} the topological space S endowed now with another smooth structure such that the inclusion map $\widetilde{\iota} \colon \widetilde{S} \hookrightarrow M$ is a smooth immersion. Note that \widetilde{S} is an immersed submanifold of M. Since S and \widetilde{S} have the same topology by assumption, both maps $\iota \colon S \to \widetilde{S}$ and $\widetilde{\iota} \colon \widetilde{S} \to S$ are continuous, and hence smooth by part (b) of *Exercise* 5, *Sheet* 8. Therefore, S is diffeomorphic to \widetilde{S} .

Remark. It is possible for a given subset S of a smooth manifold M to have more than one topology making it into an immersed submanifold of M. However, for *weakly embedded* submanifolds¹, we have the following uniqueness result, which can be proved similarly to

¹We refer to the *Remark* after the solution of *Exercise* 5, *Sheet* 8 for the definition of this notion

Exercise 2: If M is a smooth manifold and if S is a weakly embedded submanifold of M, then S has only one topology and smooth structure with respect to which it is an immersed submanifold of M.

Exercise 3:

- (a) Let M be a smooth manifold, let $S \subseteq M$ be an immersed or embedded submanifold, and let $p \in S$. Show that a vector $v \in T_pM$ is in T_pS if and only if there exists a smooth curve $\gamma: J \to M$ whose image is contained in S, and which is also smooth as a map into S, such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = v$.
- (b) Let M be a smooth manifold, let $S \subseteq M$ be an embedded submanifold and let $\gamma: J \to M$ be a smooth curve whose image happens to lie in S. Show that $\gamma'(t)$ is in the subspace $T_{\gamma(t)}S$ of $T_{\gamma(t)}M$.

Solution:

(a) Assume that the given vector $v \in T_pM$ lies also in T_pS , which is identified with $d\iota_p(T_pS)$, so that $v = d\iota_p(w)$ for some $w \in T_pS$. By part (a) of *Exercise* 5, *Sheet* 4 there exists a smooth curve $\gamma: J \to S$ such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = w$. Since S is an immersed (or embedded) submanifold of M, the inclusion map $\iota: S \to M$ is a smooth immersion, so the composite map $\iota \circ \gamma: J \to M$ is a smooth curve in M whose image is clearly contained in S, which satisfies $0 \in J$, $(\iota \circ \gamma)(0) = p$, and finally by part (b) of *Exercise* 5, *Sheet* 4 we also have

$$(\iota \circ \gamma)'(0) = d\iota_{\gamma(0)}(\gamma'(0)) = d\iota_p(w) = v.$$

The converse follows immediately from part (a) of *Exercise* 5, *Sheet* 4 in view of the identification of T_pS with $d\iota_p(T_pS)$.

(b) By assumption and by part (c) of *Exercise* 5, *Sheet* 8 the given map γ is also smooth as a map from J to S, so the statement follows immediately from part (a).

Exercise 4:

(a) Let M be a smooth manifold and let $S \subseteq M$ be an embedded submanifold. Show that if $\Phi: U \to N$ is a local defining map for S, then it holds that

$$T_p S \cong \ker \left(d\Phi_p \colon T_p M \to T_{\Phi(p)} N \right) \text{ for every } p \in S \cap U$$

(b) Let M be a smooth manifold. Suppose that $S \subseteq M$ is a level set of a smooth submersion $\Phi = (\Phi_1, \ldots, \Phi_k) \colon M \to \mathbb{R}^k$. Show that a vector $v \in T_p M$ is tangent to S if and only if $v\Phi_1 = \ldots = v\Phi_k = 0$.

Solution:

(a) Recall that we identify T_pS with its image $d\iota_p(T_pS) \subseteq T_pM$, where $\iota: S \hookrightarrow M$ is the inclusion map, which is a smooth embedding by assumption. Note that by hypothesis we have $S \cap U = \Phi^{-1}(q)$ for some $q \in N$. Therefore, we have $\Phi \circ \iota|_{S \cap U} = c_q$, where

 $c_q\colon S\cap U\to N$ is the constant map on $S\cap U$ with value $q\in N.$ Thus, if $p\in S\cap U$ is arbitrary, then

$$0 = d(c_q)_p = d\Phi_p \circ d(\iota|_{S \cap U})_p.$$

Hence the differential $d(\iota|_{S\cap U})_p$ induces an injective map from T_pS to ker $d\Phi_p$ (because ι is an embedding).

In order to conclude, it suffices to show that both spaces have the same dimension. Denote by m, n, s the dimension of M, N, S, respectively. By *Corollary 5.10* the codimension of S in M is n, i.e., m - s = n. On the other hand, by linear algebra and by the surjectivity of $d\Phi_p$ we have

$$n = \dim \operatorname{im} d\Phi_p = \underbrace{\dim T_p M}_{=m} - \dim \ker d\Phi_p \implies$$
$$\Longrightarrow \dim \ker d\Phi_p = m - n = s.$$

Hence, T_pS and ker $d\Phi_p$ have the same dimension s, and are thus identified via $d\iota_p$.

(b) Fix $p \in S$. By part (a) we know that $v \in T_p M$ is tangent to S if and only if $d\Phi_p(v) = 0$. Denote by $\operatorname{pr}_1, \ldots, \operatorname{pr}_k \colon \mathbb{R}^k \to \mathbb{R}$ the projection maps to the corresponding coordinates. By the description of $T_p \mathbb{R}^k$, note that a vector $w \in T_p \mathbb{R}^k$ is 0 if and only if $w(\operatorname{pr}_i) = 0$ for all $1 \leq i \leq k$. Hence,

$$d\Phi_p(v) = 0 \iff d\Phi_p(v)(\mathrm{pr}_i) = 0, \ \forall 1 \le i \le k \iff v(\underbrace{\mathrm{pr}_i \circ \Phi}_{=\Phi_i}) = 0, \ \forall 1 \le i \le k,$$

which completes the proof of (b).

Exercise 5:

(a) Consider the smooth curve

$$\beta \colon (-\pi, \pi) \to \mathbb{R}^2, \ t \mapsto (\sin 2t, \sin t)$$

from Example 4.5(2). Show that its image is not an embedded submanifold of \mathbb{R}^2 .

(b) Consider the smooth function

$$\Phi \colon \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto x^2 - y^2.$$

Show that the level set $\Phi^{-1}(0)$ is an immersed submanifold of \mathbb{R}^2 .

[Hint: Set up an appropriate bijection and imitate the proof of *Proposition 5.13*.]

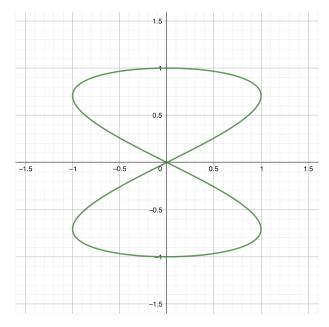
(c) Consider the smooth function

$$\Psi \colon \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^2 - y^3$$

Show that the level set $\Psi^{-1}(0)$ is not an immersed submanifold of \mathbb{R}^2 . [Hint: Argue by contradiction and use *Exercise* 3(a).]

Solution:

(a) The image of β has been plotted below.

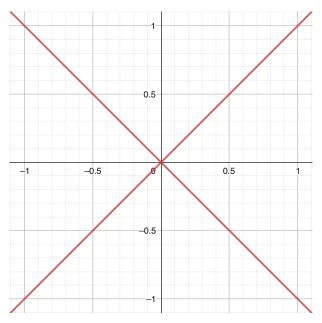


Endowed with the subspace topology inherited from \mathbb{R}^2 , the image of β is not a topological manifold. Indeed, essentially the same argument as the one presented in the solution of *Exercise* 4, *Sheet* 1 shows that $\beta(-\pi, \pi)$ is not locally Euclidean at the (self-intersection) point $(0,0) \in \beta(-\pi,\pi)$. Therefore, the image of β cannot be an embedded submanifold of \mathbb{R}^2 .

(b) The level set

$$\Phi^{-1}(0) = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = 0 \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 \mid (y - x)(y + x) = 0 \right\}$$

has been plotted below.



Even though it is not an embedded submanifold of \mathbb{R}^2 , as already demonstrated in the solution to part (b) of *Exercise* 3, *Sheet* 8, we will show that $\Phi^{-1}(0)$ can be given a topology and smooth structure making it into an immersed submanifold of \mathbb{R}^2 . To this end, note that there is a bijection between $\Phi^{-1}(0)$ and the subset $S := S_0 \sqcup S_1$ of \mathbb{R}^2 , where

$$S_0 \coloneqq \left\{ (x, 0) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\} \cong \mathbb{R}$$

and

$$S_1 \coloneqq \left\{ (x, 1) \in \mathbb{R}^2 \mid x \in \mathbb{R} \setminus \{0\} \right\} \cong \mathbb{R} \setminus \{0\}.$$

As S_0 is the graph of the constant function $\mathbb{R} \to \mathbb{R}$, $x \mapsto 0$, and S_1 is the graph of the constant function $\mathbb{R} \setminus \{0\} \to \mathbb{R}$, $x \mapsto 1$, they are both embedded submanifolds of \mathbb{R}^2 , and thus so is $S = S_1 \sqcup S_2$; in particular, the inclusion map $\iota \colon S \to \mathbb{R}^2$ is a smooth embedding. Using the bijection $G \colon S \to \Phi^{-1}(0)$, we endow $\Phi^{-1}(0)$ with a topology by declaring a subset $X \subseteq \Phi^{-1}(0)$ to be open if and only if $G^{-1}(X) \subseteq S$ is open, and with a smooth structure by taking the smooth charts for $\Phi^{-1}(0)$ to be those of the form $(G(U), \varphi \circ G^{-1})$, where (U, φ) is a smooth chart for S. With this topology (which is different from the subspace topology) and smooth structure, S is a smooth manifold and G is a diffeomorphism. Since the inclusion map $\Phi^{-1}(0) \hookrightarrow \mathbb{R}^2$ can be written as the composition

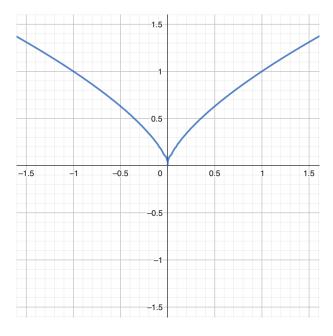
$$\Phi^{-1}(0) \xrightarrow{G^{-1}} S \xrightarrow{\iota} \mathbb{R}^2$$

of a diffeomorphism followed by a smooth immersion, it is itself is a smooth immersion by *Exercise* 1(a)(ii) and *Exercise* 5(a) from *Exercise Sheet* 6. In conclusion, $\Phi^{-1}(0)$ is an immersed submanifold of \mathbb{R}^2 .

(c) The level set

$$\Psi^{-1}(0) = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 - y^3 = 0 \right\}$$

has been plotted below.



We assume that $\Psi^{-1}(0)$ can be given a topology and smooth structure making it into an immersed submanifold of \mathbb{R}^2 and we will derive a contradiction using *Exercise* 3(a). To this

end, observe that $\Psi^{-1}(0)$ must be 1-dimensional; indeed, $\Psi^{-1}(0) \setminus \{(0,0)\}$ is an embedded 1-submanifold of \mathbb{R}^2 , as its two connected components, corresponding to $(x, y) \in \Phi^{-1}(0)$ with x < 0 (the left branch) and $(x, y) \in \Phi^{-1}(0)$ with x > 0 (the right branch), are the graphs of the smooth functions $x \in (-\infty, 0) \mapsto x^{\frac{2}{3}}$ and $x \in (0, +\infty) \mapsto x^{\frac{2}{3}}$, respectively. Therefore, $T_{(0,0)}\Phi^{-1}(0)$ is a 1-dimensional subspace of $T_{(0,0)}\mathbb{R}^2 \cong \mathbb{R}^2$, so by *Exercise* 3(a) there exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ whose image lies in $\Phi^{-1}(0)$ and which satisfies $\gamma(0) = (0,0)$ and $\gamma'(0) \neq 0$. Writing $\gamma(t) = (x(t), y(t))$, we see that y(t) takes a global minimum at t = 0, so y'(0) = 0. On the other hand, since $\gamma(t) \in \Phi^{-1}(0)$ for every $t \in (-\varepsilon, \varepsilon)$, we have $x^2(t) = y^3(t)$ for every $t \in (-\varepsilon, \varepsilon)$. Differentiating twice and setting t = 0, we obtain x'(0) = 0, and since y'(0) = 0, we conclude that $\gamma'(0) = 0$, which is a contradiction. Hence, the level set $\Psi^{-1}(0)$ is not an immersed submanifold of \mathbb{R}^2 .

Exercise 6: Consider the smooth function

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto x^3 + y^3 + 1.$$

- (a) Which are the regular values of f?
- (b) For which $c \in \mathbb{R}$ is the level set $f^{-1}(c)$ an embedded submanifold of \mathbb{R}^2 ?
- (c) Whenever the level set $S = f^{-1}(c)$ is an embedded submanifold of \mathbb{R}^2 , given $p \in S$, determine the tangent space $T_p S \cong d\iota_p(T_p S) \subset T_p \mathbb{R}^2 \cong \mathbb{R}^2$, where $\iota \colon S \hookrightarrow \mathbb{R}^2$ is the inclusion map.

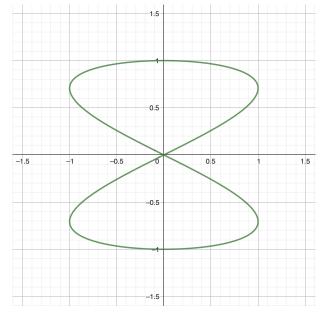
Solution:

(a) The gradient of f at an arbitrary point $(x, y) \in \mathbb{R}^2$ is given by

$$\operatorname{grad}(f)(x, y) = (3x^2, 3y^2),$$

and it is obvious that it vanishes precisely at the origin $(x, y) = (0, 0) \in \mathbb{R}^2$. Since f(0, 0) = 1 and since the fibers of f are disjoint, we conclude that every $c \in \mathbb{R} \setminus \{1\}$ is a regular value of f, while c = 1 is a critical value of f.

The level sets $f^{-1}(-9)$ (in green), $f^{-1}(1)$ (in purple) and $f^{-1}(9)$ (in red) have been plotted below:



(b) By Corollary 5.10 we infer that each level set $f^{-1}(c)$, where $c \neq 1$, is a properly embedded submanifold of \mathbb{R}^2 . Now, regarding the level set $f^{-1}(1)$, Corollary 5.10 does not say that $f^{-1}(1)$ is not an embedded submanifold, so we have to argue differently in order to treat this case. Observe that

$$f^{-1}(1) = \left\{ (x, y) \in \mathbb{R}^2 \mid x^3 + y^3 = 0 \right\} = \left\{ (x, -x) \mid x \in \mathbb{R} \right\}$$

is the line y = -x in the plane \mathbb{R}^2 (plotted in purple above), which is clearly diffeomorphic to \mathbb{R} , and hence (it is straightforward to check that) $f^{-1}(1)$ is a properly embedded submanifold of \mathbb{R}^2 , taking also part (b) of *Exercise* 1, *Sheet* 8 into account.

In conclusion, all level sets of f are properly embedded submanifolds of \mathbb{R}^2 .

(c) Let $c \in \mathbb{R} \setminus \{1\}$, set $S \coloneqq f^{-1}(c)$, and pick $p = (p_x, p_y) \in S$. By part (b) and by *Exercise* 4(a) we know that $T_pS = \ker df_p$, and the differential df_p is represented by the row matrix $(3p_x^2, 3p_y^2)$. Thus, if $V = (V_x, V_y) \in T_p \mathbb{R}^2 \cong \mathbb{R}^2$, then

$$df_p(V_x, V_y) = 3 \, p_x^2 \, V_x + 3 \, p_y^2 \, V_y,$$

and hence

$$T_p S = \{ V = (V_x, V_y) \in T_p \mathbb{R}^2 \mid p_x^2 V_x + p_y^2 V_y = 0 \}.$$

Finally, recall that

$$S := f^{-1}(1) = \{ (x, y) \in \mathbb{R}^2 \mid x + y = 0 \},\$$

which is a linear subspace of \mathbb{R}^2 (e.g., S may be viewed as the kernel of the linear map $L: \mathbb{R}^2 \to \mathbb{R}, (x, y)^T \mapsto (1, 1) \cdot (x, y)^T = x + y$), and hence

$$T_p S = \{ V = (V_x, V_y) \in T_p \mathbb{R}^2 \mid V_x + V_y = 0 \}$$

for any $p \in S$ (e.g., by applying *Exercise* 4(a) to the (smooth) linear map L described above).