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Exercise Sheet 9 – Solutions

Exercise 1: Let M be a smooth manifold and let S be an immersed submanifold of
M . Show that if any of the following conditions hold, then S is actually an embedded
submanifold of M .

(a) The codimension of S in M is zero.

(b) The inclusion map ι : S ↪→ M is proper.

(c) S is compact.

Solution: Since S is an immersed submanifold of M , the inclusion map ι : S ↪→ M is
an injective smooth immersion. If any of the above conditions holds, then Proposition
4.6 implies that ι is a smooth embedding; in particular, ι(S) = S is endowed with the
subspace topology inherited from M . Therefore, in any of these three cases, S is an
embedded submanifold of M .

Exercise 2: Let M be a smooth manifold. Show that if S is an immersed submanifold
of M , then for the given topology on S, there exists a unique smooth structure on S such
that the inclusion map S ↪→ M is a smooth immersion.

[Hint: Use part (b) of Exercise 5, Sheet 8.]

Solution: Denote by ι the inclusion map S ↪→ M of the immersed submanifold S of
M and by S̃ the topological space S endowed now with another smooth structure such
that the inclusion map ι̃ : S̃ ↪→ M is a smooth immersion. Note that S̃ is an immersed
submanifold of M . Since S and S̃ have the same topology by assumption, both maps
ι : S → S̃ and ι̃ : S̃ → S are continuous, and hence smooth by part (b) of Exercise 5,

Sheet 8. Therefore, S is diffeomorphic to S̃.

Remark. It is possible for a given subset S of a smooth manifold M to have more than one
topology making it into an immersed submanifold of M . However, for weakly embedded
submanifolds1, we have the following uniqueness result, which can be proved similarly to

1We refer to the Remark after the solution of Exercise 5, Sheet 8 for the definition of this notion
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Exercise 2: If M is a smooth manifold and if S is a weakly embedded submanifold of M ,
then S has only one topology and smooth structure with respect to which it is an immersed
submanifold of M .

Exercise 3:

(a) Let M be a smooth manifold, let S ⊆ M be an immersed or embedded submanifold,
and let p ∈ S. Show that a vector v ∈ TpM is in TpS if and only if there exists a
smooth curve γ : J → M whose image is contained in S, and which is also smooth as
a map into S, such that 0 ∈ J , γ(0) = p and γ′(0) = v.

(b) Let M be a smooth manifold, let S ⊆ M be an embedded submanifold and let
γ : J → M be a smooth curve whose image happens to lie in S. Show that γ′(t) is in
the subspace Tγ(t)S of Tγ(t)M .

Solution:

(a) Assume that the given vector v ∈ TpM lies also in TpS, which is identified with
dιp(TpS), so that v = dιp(w) for some w ∈ TpS. By part (a) of Exercise 5, Sheet 4 there
exists a smooth curve γ : J → S such that 0 ∈ J , γ(0) = p and γ′(0) = w. Since S is an
immersed (or embedded) submanifold of M , the inclusion map ι : S ↪→ M is a smooth
immersion, so the composite map ι ◦ γ : J → M is a smooth curve in M whose image is
clearly contained in S, which satisfies 0 ∈ J , (ι ◦ γ)(0) = p, and finally by part (b) of
Exercise 5, Sheet 4 we also have

(ι ◦ γ)′(0) = dιγ(0)
(
γ′(0)

)
= dιp(w) = v.

The converse follows immediately from part (a) of Exercise 5, Sheet 4 in view of the
identification of TpS with dιp(TpS).

(b) By assumption and by part (c) of Exercise 5, Sheet 8 the given map γ is also smooth
as a map from J to S, so the statement follows immediately from part (a).

Exercise 4:

(a) Let M be a smooth manifold and let S ⊆ M be an embedded submanifold. Show
that if Φ : U → N is a local defining map for S, then it holds that

TpS ∼= ker
(
dΦp : TpM → TΦ(p)N

)
for every p ∈ S ∩ U.

(b) Let M be a smooth manifold. Suppose that S ⊆ M is a level set of a smooth
submersion Φ = (Φ1, . . . , Φk) : M → Rk. Show that a vector v ∈ TpM is tangent to S
if and only if vΦ1 = . . . = vΦk = 0.

Solution:

(a) Recall that we identify TpS with its image dιp(TpS) ⊆ TpM , where ι : S ↪→ M is the
inclusion map, which is a smooth embedding by assumption. Note that by hypothesis
we have S ∩ U = Φ−1(q) for some q ∈ N . Therefore, we have Φ ◦ ι|S∩U = cq, where
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cq : S ∩ U → N is the constant map on S ∩ U with value q ∈ N . Thus, if p ∈ S ∩ U is
arbitrary, then

0 = d(cq)p = dΦp ◦ d(ι|S∩U)p.

Hence the differential d(ι|S∩U)p induces an injective map from TpS to ker dΦp (because ι
is an embedding).

In order to conclude, it suffices to show that both spaces have the same dimension.
Denote by m, n, s the dimension of M , N , S, respectively. By Corollary 5.10 the
codimension of S in M is n, i.e., m− s = n. On the other hand, by linear algebra and by
the surjectivity of dΦp we have

n = dim im dΦp = dimTpM︸ ︷︷ ︸
=m

− dimker dΦp =⇒

=⇒ dimker dΦp = m− n = s.

Hence, TpS and ker dΦp have the same dimension s, and are thus identified via dιp.

(b) Fix p ∈ S. By part (a) we know that v ∈ TpM is tangent to S if and only if dΦp(v) = 0.
Denote by pr1, . . . , prk : Rk → R the projection maps to the corresponding coordinates.
By the description of TpRk, note that a vector w ∈ TpRk is 0 if and only if w(pri) = 0 for
all 1 ≤ i ≤ k. Hence,

dΦp(v) = 0 ⇐⇒ dΦp(v)(pri) = 0, ∀1 ≤ i ≤ k ⇐⇒ v(pri ◦Φ︸ ︷︷ ︸
=Φi

) = 0, ∀1 ≤ i ≤ k,

which completes the proof of (b).

Exercise 5:

(a) Consider the smooth curve

β : (−π, π) → R2, t 7→ (sin 2t, sin t)

from Example 4.5 (2). Show that its image is not an embedded submanifold of R2.

(b) Consider the smooth function

Φ: R2 → R, (x, y) 7→ x2 − y2.

Show that the level set Φ−1(0) is an immersed submanifold of R2.

[Hint: Set up an appropriate bijection and imitate the proof of Proposition 5.13.]

(c) Consider the smooth function

Ψ: R2 → R, (x, y) 7→ x2 − y3.

Show that the level set Ψ−1(0) is not an immersed submanifold of R2.

[Hint: Argue by contradiction and use Exercise 3(a).]
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Solution:

(a) The image of β has been plotted below.

Endowed with the subspace topology inherited from R2, the image of β is not a topological
manifold. Indeed, essentially the same argument as the one presented in the solution of
Exercise 4, Sheet 1 shows that β(−π, π) is not locally Euclidean at the (self-intersection)
point (0, 0) ∈ β(−π, π). Therefore, the image of β cannot be an embedded submanifold
of R2.

(b) The level set

Φ−1(0) =
{
(x, y) ∈ R2 | x2 − y2 = 0

}
=

{
(x, y) ∈ R2 | (y − x)(y + x) = 0

}
has been plotted below.
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Even though it is not an embedded submanifold of R2, as already demonstrated in the
solution to part (b) of Exercise 3, Sheet 8, we will show that Φ−1(0) can be given a
topology and smooth structure making it into an immersed submanifold of R2. To this
end, note that there is a bijection between Φ−1(0) and the subset S := S0 ⊔ S1 of R2,
where

S0 :=
{
(x, 0) ∈ R2 | x ∈ R

} ∼= R

and
S1 :=

{
(x, 1) ∈ R2 | x ∈ R \ {0}

} ∼= R \ {0}.

As S0 is the graph of the constant function R → R, x 7→ 0, and S1 is the graph of the
constant function R \ {0} → R, x 7→ 1, they are both embedded submanifolds of R2,
and thus so is S = S1 ⊔ S2; in particular, the inclusion map ι : S ↪→ R2 is a smooth
embedding. Using the bijection G : S → Φ−1(0), we endow Φ−1(0) with a topology by
declaring a subset X ⊆ Φ−1(0) to be open if and only if G−1(X) ⊆ S is open, and
with a smooth structure by taking the smooth charts for Φ−1(0) to be those of the form(
G(U), φ ◦ G−1

)
, where (U,φ) is a smooth chart for S. With this topology (which is

different from the subspace topology) and smooth structure, S is a smooth manifold and
G is a diffeomorphism. Since the inclusion map Φ−1(0) ↪→ R2 can be written as the
composition

Φ−1(0)
G−1

−→ S
ι−→ R2

of a diffeomorphism followed by a smooth immersion, it is itself is a smooth immersion
by Exercise 1 (a)(ii) and Exercise 5 (a) from Exercise Sheet 6. In conclusion, Φ−1(0) is an
immersed submanifold of R2.

(c) The level set
Ψ−1(0) =

{
(x, y) ∈ R2 | x2 − y3 = 0

}
has been plotted below.

We assume that Ψ−1(0) can be given a topology and smooth structure making it into an
immersed submanifold of R2 and we will derive a contradiction using Exercise 3(a). To this
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end, observe that Ψ−1(0) must be 1-dimensional; indeed, Ψ−1(0)\{(0, 0)} is an embedded
1-submanifold of R2, as its two connected components, corresponding to (x, y) ∈ Φ−1(0)
with x < 0 (the left branch) and (x, y) ∈ Φ−1(0) with x > 0 (the right branch), are the

graphs of the smooth functions x ∈ (−∞, 0) 7→ x
2
3 and x ∈ (0,+∞) 7→ x

2
3 , respectively.

Therefore, T(0,0)Φ
−1(0) is a 1-dimensional subspace of T(0,0)R2 ∼= R2, so by Exercise 3(a)

there exists a smooth curve γ : (−ε, ε) → R2 whose image lies in Φ−1(0) and which satisfies
γ(0) = (0, 0) and γ′(0) ̸= 0. Writing γ(t) =

(
x(t), y(t)

)
, we see that y(t) takes a global

minimum at t = 0, so y′(0) = 0. On the other hand, since γ(t) ∈ Φ−1(0) for every
t ∈ (−ε, ε), we have x2(t) = y3(t) for every t ∈ (−ε, ε). Differentiating twice and setting
t = 0, we obtain x′(0) = 0, and since y′(0) = 0, we conclude that γ′(0) = 0, which is a
contradiction. Hence, the level set Ψ−1(0) is not an immersed submanifold of R2.

Exercise 6: Consider the smooth function

f : R2 → R, (x, y) 7→ x3 + y3 + 1.

(a) Which are the regular values of f?

(b) For which c ∈ R is the level set f−1(c) an embedded submanifold of R2?

(c) Whenever the level set S = f−1(c) is an embedded submanifold of R2, given p ∈ S,
determine the tangent space TpS ∼= dιp(TpS) ⊂ TpR2 ∼= R2, where ι : S ↪→ R2 is the
inclusion map.

Solution:

(a) The gradient of f at an arbitrary point (x, y) ∈ R2 is given by

grad(f)(x, y) = (3x2, 3y2),

and it is obvious that it vanishes precisely at the origin (x, y) = (0, 0) ∈ R2. Since
f(0, 0) = 1 and since the fibers of f are disjoint, we conclude that every c ∈ R \ {1} is a
regular value of f , while c = 1 is a critical value of f .

The level sets f−1(−9) (in green), f−1(1) (in purple) and f−1(9) (in red) have been
plotted below:
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(b) By Corollary 5.10 we infer that each level set f−1(c), where c ̸= 1, is a properly
embedded submanifold of R2. Now, regarding the level set f−1(1), Corollary 5.10 does
not say that f−1(1) is not an embedded submanifold, so we have to argue differently in
order to treat this case. Observe that

f−1(1) =
{
(x, y) ∈ R2 | x3 + y3 = 0

}
=

{
(x,−x) | x ∈ R

}
is the line y = −x in the plane R2 (plotted in purple above), which is clearly diffeomorphic
to R, and hence (it is straightforward to check that) f−1(1) is a properly embedded
submanifold of R2, taking also part (b) of Exercise 1, Sheet 8 into account.

In conclusion, all level sets of f are properly embedded submanifolds of R2.

(c) Let c ∈ R \ {1}, set S := f−1(c), and pick p = (px, py) ∈ S. By part (b) and by
Exercise 4(a) we know that TpS = ker dfp, and the differential dfp is represented by the
row matrix (3p2x, 3p

2
y). Thus, if V = (Vx, Vy) ∈ TpR2 ∼= R2, then

dfp(Vx, Vy) = 3 p2x Vx + 3 p2y Vy,

and hence
TpS =

{
V = (Vx, Vy) ∈ TpR2 | p2x Vx + p2y Vy = 0

}
.

Finally, recall that

S := f−1(1) =
{
(x, y) ∈ R2 | x+ y = 0

}
,

which is a linear subspace of R2 (e.g., S may be viewed as the kernel of the linear map
L : R2 → R, (x, y)T 7→ (1, 1) · (x, y)T = x+ y), and hence

TpS =
{
V = (Vx, Vy) ∈ TpR2 | Vx + Vy = 0

}
for any p ∈ S (e.g., by applying Exercise 4(a) to the (smooth) linear map L described
above).
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