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Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 7 — Solutions

Exercise 1:

(a) Let N and My, ..., My be smooth manifolds, where k > 2, and let F;: N — M; be
smooth maps, where 1 < ¢ < k. Show that the map

G: N — HMi, z— (Fi(z),..., Fi(z))

i=1
is smooth and that its differential at any point p € N is of the form

(dG,) (v) = (d(F1)p(v), ..., d(Fy)p(v)), v € T,N.

(b) Let M be a smooth manifold. Show that there exists a smooth map f: M — [0, +00)
that is proper.
[Hint: Use a function of the form f = > % ¢;40;, where (¢;);2% is a partition of unity
and the ¢;’s are real numbers.]

(c) Let F': M — N be an injective smooth immersion between smooth manifolds. Show
that there exists a smooth embedding G: M — N x R.

[Hint: Use parts (a) and (b).]

Solution:

(a) The fact that G is smooth follows immediately from part (b) of Exercise 4, Sheet 3,
and the fact that the differential of G' at p € N has the above form follows readily from
part (b) of Exercise 1, Sheet 4 and Ezercise 3, Sheet 4.

(b) Let 4 = (U;):en be a countable basis for the topology of M such that U; is compact for
each i € N, and let (¢;) be a smooth partition of unity subordinate to 4. Consider now
a sequence (¢;);en of non-negative real numbers satisfying lim; .., ¢; = 400 (for instance,
take ¢; = i) and define the smooth function

f: M — R, IEHZCZ@/JZ(I)
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We may view f(z) as a weighted average of the numbers ¢;, using the coefficients v;(x)
as weights, which satisfy 0 < 1;(x) <1 and ), ¢;(x) = 1 for every x € M. In particular,
if I, C N is the set of indices 7 such that U; contains the point x € M, then any upper or
lower bound for the numbers ¢; with i € I, is also an upper or lower bound for f(x). Thus,
if f(x) < ¢ for some ¢ > 0, then for any ¢ € N such that ;(z) # 0 (there are only finitely
many such indices by construction of a partition of unity) it holds that ¢; < ¢, so x is
contained in the union of the corresponding (first few) U,’s, since then = € supp¢; C U;.

We will now show that f is proper. Let K C R be a compact set. Take any number
¢ > 0 such that K C (—¢,¢) and pick an index i, € N such that ¢; > ¢ for every i > i,.
The preimage f~'(K) consists of points x € M satisfying f(x) < ¢, and is therefore
contained in the compact set |J,, U;. Since the set f~!(K) is closed, we conclude that
it is compact, as desired.

(c) By part (b) there exists a smooth proper function f: M — R. Consider now the map
G: M — N xR, z+— (F(z), f(2)),

which is smooth and whose differential has the form dG = (dF ! df) by part (a). Since F
is injective, one immediately sees that G is also injective. Moreover, since F' is a smooth
immersion, and thus its differential dF), is injective at every point p € M, it follows
readily that dG, = (de, dfp) is also injective at every point p € M. Consequently, G is
an injective smooth immersion.

Next, we claim that G is a proper map. Given a compact subset K C N x R,
we will show that G™'(K) is a compact subset of M. To this end, since N x R is a
Hausdorff space, K is in particular a closed subset of N x R, and since G is continuous,
the preimage G~!(K) is a closed subset of M. Now, since the projection to the second
factor pry: N x R — R is continuous, the image pry(K) is a compact subset of R, and
since f is proper by assumption, the preimage f _1(pr2(K )) is a compact subset of M,
which contains the closed set G™'(K). Hence, G7'(K) is a compact subset of M, as
claimed.

In conclusion, G is a smooth embedding by the above and by Proposition 4.6(b), as
asserted.

Exercise 2:
(a) Show that the inclusion map ¢: S* — R"™! is a smooth embedding.
(b) Consider the map

F:R — R? t+ (2+tanht) - (cost, sint).

(i) Show that F'is an injective smooth immersion.
(ii) Show that F is a smooth embedding.

Solution:

(a) Consider the graph coordinates (U7 N'S™, ¢7") for S™; see Ezample 1.8(2). We have
shown in Ezample 2.7 that the inclusion map ¢: S* «— R"™"! is smooth, because its
coordinate representation with respect to any of the graph coordinates is

Wt .. u") = (ul, oo T T — 2 ,u”) ,
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which is smooth on its domain, the unit ball B" = {u = (u',...,u") € R" | |u| < 1}.
The Jacobian matrix of the coordinate representation 7= ¢ o (¢*)~" of ¢+ with respect to
the graph coordinates has the form

1 0 o 0 0 0 . 0 0

1 . 0 0 0 . 0 0
0 0 o 1 0 0 o 0 0

Tu! Tu? o Fui~! Tul Fuit! o Fun—! Tuh
Vi-lul?  \/1=[ul? Vi-lul2 1=l /1= ]u? Vi-lul2  \/1=]ul?

0 0 . 0 0 1 . 0 0
0 0 o 0 0 0 o 1 0
0 0 . 0 0 0 o 0 1

In particular, we observe that each of these (n + 1) x n matrices (which represent the
differential of ¢ in coordinate bases) has rank n. Hence, ¢ is an injective smooth immersion.
Since S™ is compact, by Proposition 4.6(c) we conclude that ¢ is a smooth embedding.

(b) We first deal with (i). Clearly, F' is smooth. Next, recall that the function
|F(t)|| =2+ tanht, t € R

is strictly increasing, which implies that F' is injective. Finally, to show that F'is a smooth
immersion, it suffices to show that F'(t) # 0 for every ¢ € R. To this end, recall that

d
—tanht = ———, t € R,
t h*t

d CoS

so we have

1 1
F'(t) = (—(2 + tanht)sint + ol cost, (24 tanht)cost + ol sint) , teR,

and thus

1
|1F'()||* = (2 + tanh t)? + Y >0 forallt eR,

which implies that F(t) # 0 for every ¢t € R, as desired.
We now deal with (ii). Consider the open annulus

U={zeR|1<|z| <3} CR?

and note that F(t) € U for every t € R. (Incidentally, the image of F|[_4r 4x has been
plotted below.)
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Thus, F' may be viewed as an injective smooth immersion F': R — U. Since the inclusion
map ¢: U < R? is a smooth embedding, in view of part (a)(iii) of Ezercise 1, Sheet 6 and
Proposition 4.6, to prove (ii), it suffices to show that F': R — U is a proper map. To this
end, given a compact subset K of U, we have to show that F'~1(K) is a compact subset
of R, or equivalently that it is closed and bounded. Since K C U is compact and U C R?
is Hausdorff, K is a closed subset of U, and since F is continuous, F~!(K) is a closed
subset of R. Now, denote by m (resp. M) the minimum (resp. the maximum) norm of the
points of K, and observe that [m, M] C (1,3). Denote also by ¢ (resp. L) the preimage
of m (resp. M) under the strictly increasing function

g:R— (1,3), t—||F(t)|| =2+ tanht

and note that F~'(K) C [¢, L], which shows that F~!(K) is a bounded subset of R. This
finishes the proof of (ii).

Exercise 3 (Local embedding theorem): Let F': M — N be a smooth map between
smooth manifolds. Show that F'is a smooth immersion if and only if every point in M
has a neighborhood U such that F|y: U — N is a smooth embedding.

[Hint: Use the rank theorem and the closed map lemma.]

Solution: If every point in M has a neighborhood on which F' is a smooth embedding,
then F' has full rank everywhere, so it is a smooth immersion.

Conversely, assume that F' is a smooth immersion, and let p € M. We first claim that
p has a neighborhood on which F' is injective. Indeed, by the rank theorem there is an
open neighborhood U; of p on which F' has a coordinate representation of the form

and thus F|y, is injective. Now, consider a precompact neighborhood U of p such that
U C U;. The restriction of F' to U, is an injective continuous map with compact domain



and Hausdorff codomain, so it is a topological embedding; see Claims 1 and 2 in the proof
of Proposition 4.6. Since any restriction of a topological embedding is again a topological
embedding, F|y is both a topological embedding and a smooth immersion, and hence F'|;
is a smooth embedding.

Exercise 4: Let M and N be smooth manifolds, and let 7: M — N be a surjective
smooth submersion. Show that there is no other smooth manifold structure on N that
satisfies the conclusion of Theorem 4.12; in other words, assuming that N represents the
same set as N with a possibly different topology and smooth structure, and that for every
smooth manifold P, amap F': N — P is smooth if and only if F'or is smooth, show that
Idy is a diffeomorphism between N and N.

Solution: Denote by Idy, respectively Id g, the identity map of IV, respectively N , with
the smooth structure of N, respectively N , on both the source and the target. Denote
also by Id, 5, respectively Idg ,, the identity map, where on the source, respectively on
the target, we put the smooth structure of N, and where on the target, respectively on
the source, we put the smooth structure of N. In addition, denote by my, respectively
75, the surjective smooth submersion with the smooth structure of IV, respectively of IV,
on the target. Now, note that
IdN,]V OTTN = Tj75

which is smooth, so by the assumption on N applied to P = N and F = IdN,zV we
conclude that Id NN 1S smooth. On the other hand, we also have

Id]\~]7N oG = TN,

which is smooth, so by the assumption on N applied to P = N and F = Idg , we
conclude that Id g 5 is smooth. Hence, Id 5 is a diffeomorphism with inverse Idg .

Exercise 5: Consider the map
m:R* 5 R, (2,9) — zy.

Show that 7 is surjective and smooth, and that for each smooth manifold P, a map
F: R — P is smooth if and only if F' o 7 is smooth; but 7 is not a smooth submersion.
(Therefore, the converse of Theorem 4.12 is false.)

Solution: Both the smoothness and the surjectivity of 7 is clear. Therefore, if a map
F: R — P issmooth, then For is also smooth by Fzxercise 3, Sheet 3. Now, assume that
we have a smooth manifold P and a map of sets F': R — P such that F' o 7 is smooth.
Consider the map

R =Rz (z,1),

which is clearly smooth and additionally satisfies m o « = Idg. Hence, the map
F=Foldg=(Fom)out

is smooth. Finally, note that the Jacobian of 7 is given by (y z), which vanishes at
(x,y) =0, so 7 is not a smooth submersion.
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Exercise 6 (Uniqueness of smooth quotients): Let m: M — Ny and mo: M — Nj be
surjective smooth submersions that are constant on each other’s fibers. Show that there
exists a unique diffeomorphism F': N; — N, such that F o m = my:

/\

——————————————— > N2

Solution: Since 7 is a surjective smooth submersion and since 7y is constant on the
fibers of w1, by Theorem /.13 there exists a unique smooth map Gy: N; — N, such that

G1 O T = Tg:
M
N, il s N

By reversing now the roles of m; and 7y, we see that there exists a unique smooth map
G5 Ny — Nj such that Gy o m9 = 7y:

M
Nl < e N.

We thus obtain the identities

GyoGiom =m (%)
and
GloGQOﬂ'Q:ﬂ'Q. (**)
Considering the diagram
M
Ny Ny

and observing that Idy, om = 7y, we deduce by (the uniqueness part of) Theorem 4.13
and (x) that
G2 o) G1 =1Id Ny -

Considering now the corresponding diagram for 7y and using (xx) instead, we infer simi-
larly that
G1 9 G2 =1Id Ny -

Hence, F' := G1: Ny — N, is a diffeomorphism such that F' o m; = 7, which is unique
(with this property) by construction.



