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Exercise Sheet 6 – Solutions

Exercise 1:

(a) Prove the following assertions:

(i) A composition of smooth submersions is a smooth submersion.

(ii) A composition of smooth immersions is a smooth immersion.

(iii) A composition of smooth embeddings is a smooth embedding.

(b) Show by means of a counterexample that a composition of smooth maps of constant
rank need not have constant rank.

Solution:

(a) First, we show (i). Let F : M → N and G : N → P be smooth submersions and fix
p ∈ M . Then the composite map G ◦ F : M → P is smooth by part (e) of Exercise 3,
Sheet 3, and by part (d) of Exercise 1, Sheet 4 its differential at p is the linear map

d(G ◦ F )p = dGF (p) ◦ dFp : TpM → T(G◦F )(p)P,

which is surjective, since both linear maps

dFp : TpM → TF (p)N and dGF (p) : TF (p) → T(G◦F )(p)

are surjective by assumption. Since p ∈ M was arbitrary, we conclude that G ◦ F is a
smooth submersion.

Next, to prove (ii), we argue exactly as in (i), except that the word “surjective” is
replaced by the word “injective”.

Finally, we show (iii). Let F : M → N and G : N → P be smooth embeddings.
By (ii) we know that the composite map G ◦ F : M → P is a smooth immersion, so it
remains to show that G ◦ F is a homeomorphism onto its image (G ◦ F )(M) ⊆ P in
the subspace topology. To this end, note that F is a homeomorphism onto its image
F (M) ⊆ N in the subspace topology, and that G is a homeomorphism onto its image
G(N) ⊆ P in the subspace topology, so the restriction G|F (M) : F (M) → G

(
F (M)

)
is

also a homeomorphism. Therefore, the composite map G ◦ F is a homeomorphism onto
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its image (G ◦ F )(M) ⊆ P in the subspace topology, as required. In conclusion, G ◦ F is
a smooth embedding.

(b) Consider the maps
γ : (0, 2π) → R2, t 7→ (cos t, sin t)

and
π : R2 → R, (x, y) 7→ y.

By Exercise 2(a), π is a surjective smooth submersion. Moreover, we have

∥γ(t)∥ = 1 and ∥γ′(t)∥ = ∥(− sin t, cos t)∥ = 1 for all t ∈ (0, 2π),

so γ is an injective smooth immersion; see Example 4.4 (1). Hence, both γ and π are
smooth maps of constant rank. However, the composite map

π ◦ γ : (0, 2π) → R, t 7→ sin t

does not have constant rank, because its derivative

(π ◦ γ)′ : (0, 2π) → R, t 7→ − cos t

vanishes for t = π
2
and t = 3π

2
.

Exercise 2:

(a) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Show that each of the projection
maps πi : M1 × . . .×Mk →Mi is a smooth submersion.

(b) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Choosing arbitrarily points
p1 ∈M1, . . . , pk ∈Mk, for each 1 ≤ j ≤ k consider the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk).

Show that each ιj is a smooth embedding.

(c) Examine whether the following plane curves are smooth immersions:

(i) α : R → R2, t 7→ (t3, t2).

(ii) β : R → R2, t 7→ (t3 − 4t, t2 − 4).

If so, then examine also whether they are smooth embeddings.

(d) Show that the map

G : R2 → R3, (u, v) 7→
(
(2 + cos 2πu) cos 2πv, (2 + cos 2πu) sin 2πv, sin 2πu

)
is a smooth immersion.
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Solution:

(a) Fix i ∈ {1, . . . , k} and p = (p1, . . . , pk) ∈ M1 × . . . ×Mk. By Exercise 4, Sheet 3 we
know that πi : M1 × . . . ×Mk → Mi is a smooth map, while by Exercise 3, Sheet 4 we
know that

Tp
(
M1 × . . .×Mk

)
−→ Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk

v 7→
(
d(π1)p(v), . . . , d(πi)p(v), . . . , d(πk)p(v)

)
is an R-linear isomorphism. Using the above identification, we infer that the differential
of πi at p,

d(πi)p : Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk → TpiMi,

is surjective. Since p ∈ M1 × . . . ×Mk was arbitrary, we conclude that πi is a smooth
submersion.

(b) Fix j ∈ {1, . . . , k} and points p1 ∈ M1, . . . , pj−1 ∈ Mj−1, pj+1 ∈ Mj+1, . . . , pk ∈ Mk.
We have already seen in the solution of Exercise 3, Sheet 4 that the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk)

is smooth, and it is also clear that ιj is a homeomorphism onto its image

ιj(Mj) = {p1} × · · · × {pj−1} ×Mj × {pj+1} × · · · × {pk}.

Moreover, given a point pj ∈Mj, using the identification

Tp
(
M1 × . . .×Mk

) ∼= Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk,

where p := (p1, . . . , pj−1, pj, pj+1, . . . , pk) ∈ M1 × . . .Mk, we infer that the differential of
ιj at p,

d(ιj)pj : TpjMj → Tp1M1 ⊕ . . .⊕ TpjMj ⊕ . . .⊕ TpkMk,

is injective. In conclusion, ιj is a smooth embedding.

(c) We first deal with (i). The map α(t) = (t3, t2), t ∈ R, is clearly smooth, but it is not
an immersion, since α′(t) = (3t2, 2t) vanishes at the point t = 0. Thus, α cannot be an
embedding either.
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We now deal with (ii). The map β(t) = (t3 − 4t, t2 − 4), t ∈ R, is clearly smooth and
its velocity vector β′(t) = (3t2 − 4, 2t), t ∈ R, is nowhere vanishing, so β is an injective
immersion. However, the image curve β(R) has a self-intersection for t = −2, t = 2, and
hence β cannot be an embedding.
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(d) The map G with component functions (G1, G2, G3) is clearly smooth with Jacobian
matrix

JG(u, v) =


∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)



=

−2π sin(2πu) cos(2πv) −2π
(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

 .

The 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

)

of JG has determinant

D12(u, v) := −4π2
(
2 + cos(2πu)

)
sin(2πu),

the 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

2π cos(2πu) 0

)

of JG has determinant

D13(u, v) := 4π2
(
2 + cos(2πu)

)
cos(2πu) sin(2πv),
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and the 2× 2 submatrix(
∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) sin(2πv) 2π

(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

)

of JG has determinant

D23(u, v) := −4π2
(
2 + cos(2πu)

)
cos(2πu) cos(2πv).

Observe now that for each (u, v) ∈ R2, at least one of the determinantsD12(u, v), D13(u, v)
and D23(u, v) is non-zero, since cos(2πθ) and sin(2πθ) do not vanish simultaneously. This
implies that rk

(
JG(u, v)

)
= 2 for all (u, v) ∈ R2; see part (c) of Exercise 4, Sheet 2. In

conclusion, G is a smooth immersion, as claimed.

Exercise 3 (Inverse function theorem for smooth manifolds): Let F : M → N be a
smooth map. Show that if p ∈ M is a point such that the differential dFp of F at p is
invertible, then there exist connected neighborhoods U0 of p in M and V0 of F (p) in N
such that F |U0 : U0 → V0 is a diffeomorphism.

Before giving the solution to Exercise 3, we recall the following well known theorem:

Theorem (Inverse function theorem for open subsets of Rn). Let A ⊆ Rn be open and
consider a smooth function F : A → Rn. Suppose that there is a point a ∈ A such that
the Jacobian matrix of F at a is invertible. Then there exist connected open sets U and V
such that a ∈ U ⊆ A and F (U) ⊆ V ⊆ Rn, for which the restriction F |U : U → V admits
a smooth inverse; that is, F |U is a diffeomorphism from U to V .

Solution: The idea is to pass to a coordinate representation of F and to use the inverse
function theorem. Let (U,φ) and (V, ψ) be charts for M and N around p and F (p),
respectively, such that F (U) ⊆ V , and assume WLOG that φ(p) = 0 and ψ(F (p)) = 0.

Set Û := φ(U) and V̂ := ψ(V ), and let

F̂ = ψ ◦ F ◦ φ−1 : Û → V̂

be the coordinate representation of F , which is smooth with F̂ (0) = 0. Since dFp is
invertible, the tangent space to M at p and to N at F (p) must have the same dimension,

and thus Û , V̂ ⊆ Rn, where n = dimM = dimN . Observe now that the differential

dF̂0 = dψF (p) ◦ dFp ◦ d(φ−1)0

is invertible, because dFp is invertible by assumption, and both d(φ−1)0 and dψF (p) are
invertible as well, as φ and ψ are diffeomorphisms. Note that the matrix representation of
dF̂0 with respect to the standard coordinates of Rn is the Jacobian of F̂ at 0. Therefore,
by the inverse function theorem there are connected open neighborhoods Û0 ⊆ Û and
V̂0 ⊆ V̂ of 0 such that F̂ |Û0

: Û0 → V̂0 is a diffeomorphism. Hence, for U0 := φ−1(Û0) ∋ p

and V0 := ψ−1(V̂0) ∋ F (p), the restriction F |U0 : U0 → V0 is a diffeomorphism, since we
can write it as a composition of diffeomorphisms.
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Remark. Exercise 3 has the following important corollary: a smooth map F : M → N
is a local diffeomorphism if and only if dFp is invertible for all p ∈ M . This also gives
a very useful method to prove that some map is a diffeomorphism, without explicitly
constructing a smooth inverse: a smooth bijective map F : M → N whose differential dFp

is invertible for all p ∈M is a diffeomorphism; see also Exercise 4(f).

Exercise 4: Prove the following assertions:

(a) Every composition of local diffeomorphisms is a local diffeomorphism.

(b) Every finite product of local diffeomorphisms between smooth manifolds is a local
diffeomorphism.

(c) Every local diffeomorphism is a local homeomorphism and an open map.

(d) The restriction of a local diffeomorphism to an open submanifold is a local diffeomor-
phism.

(e) Every diffeomorphism is a local diffeomorphism.

(f) Every bijective local diffeomorphism is a diffeomorphism.

(g) A map between smooth manifolds is a local diffeomorphism if and only if in a neigh-
borhood of each point of its domain, it has a coordinate representation that is a local
diffeomorphism.

Solution: The key to the solution of this exercise is the above-mentioned corollary of
the inverse function theorem: a smooth map is a local diffeomorphism if and only if its
differential is everywhere invertible.

(a) The composition of two invertible linear maps is invertible.

(b) A block-diagonal matrix with invertible blocks on the diagonal is invertible. (Use
Exercise 3, Sheet 4 for the implicit identification.)

(c) A diffeomorphism is clearly a homeomorphism, so a local diffeomorphism is a local
homeomorphism. To see that a local homeomorphism F : M → N is open, let U ⊆ M
be an open set. For every p ∈ U , there exists Up ∋ p such that F (Up) is open in N and
F |Up : Up → F (Up) is a homeomorphism. In particular, the open subset U ∩ Up ∋ p of U
is mapped to an open subset F (U ∩ Up) ∋ F (p) of F (Up). As F (Up) is itself open in N ,
we infer that F (U ∩ Up) is open in N . Hence,

F (U) =
⋃
p∈U

F (U ∩ Up)

is open in N as well. In conclusion, F is an open map.

(d) The differential of the restriction is still invertible.

(e) We may take M and N as our open neighborhoods in the definition of a local diffeo-
morphism.

6



(f) The inverse map exists set theoretically, and it is smooth as it is smooth locally around
each point by the inverse function theorem. Hence, the inverse map is smooth as well; in
other words, the given map is a diffeomorphism.

(g) If some coordinate representation around each point is a (local) diffeomorphism, then
the map is a local diffeomorphism by (a). The converse direction follows from the inverse
function theorem.

Exercise 5: Let M and N be smooth manifolds and let F : M → N be a map. Prove
the following assertions:

(a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth
submersion.

(b) If dimM = dimN and if F is either a smooth immersion or a smooth submersion,
then it is a local diffeomorphism.

Solution: Note that a local diffeomorphism is a smooth map by part (a) of Exercise 2,
Sheet 3.

(a) Assume first that F is a local diffeomorphism. By part (d) of Exercise 1, Sheet 4
we infer that for any p ∈ M , the differential of F at p is an R-linear isomorphism, and
thus both injective and surjective. Hence, F is both a smooth immersion and a smooth
submersion.

Assume now that F is both a smooth immersion and a smooth submersion. Then for
every p ∈ M , its differential dFp is both injective and surjective, and thus an R-linear
isomorphism. It follows from Exercise 3 that F is a local diffeomorphism.

(b) Since dimM = dimN , for any p ∈ M , the differential dFp : TpM → TF (p)N is an
R-linear map between R-vector spaces of the same dimension. Thus, dFp is injective or
surjective if and only if it an isomorphism. Therefore, F is a smooth immersion if and
only if F is a smooth submersion, and hence (b) follows immediately from (a).

Exercise 6: Let M , N and P be smooth manifolds, and let F : M → N be a local
diffeomorphism. Prove the following assertions:

(a) If G : P →M is continuous, then G is smooth if and only if F ◦G is smooth.

(b) If F is surjective and if H : N → P is any map, then H is smooth if and only if H ◦F
is smooth.

Solution: Recall that a local diffeomorphism is a smooth map by part (a) of Exercise 2,
Sheet 3.

(a) If G is smooth, then F ◦ G is smooth by part (e) of Exercise 3, Sheet 3. Conversely,
consider the smooth map H := F ◦G : P → N and fix a point p ∈ P . Since F is a local
diffeomorphism, there exists an open neighborhood V of G(p) such that F (V ) is open
in N and F |V : V → F (V ) is a diffeomorphism. Since G is continuous by assumption,
U := G−1(V ) is an open subset of P , and since G(p) ∈ V , it holds that p ∈ U ; in other
words, U is an open neighborhood of p in P . Observe now that G|U = (F |V )−1 ◦H|U is
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smooth by part (e) of Exercise 3, Sheet 3, since (F |V )−1 is smooth by assumption and
H|U is smooth by part (b) of Exercise 2, Sheet 3. It follows from part (a) of Exercise 2,
Sheet 3 that G is smooth.

(b) If H is smooth, then H ◦ F is smooth by part (e) of Exercise 3, Sheet 3. Conversely,
consider the smooth map G := H ◦ F and fix a point q ∈ N . Since F is surjective, there
exists a point p ∈ M such that F (p) = q, and since F is a local diffeomorphism, there
exists an open neighborhood U of p such that F (U) is open in N and F |U : U → F (U) is
a diffeomorphism; in particular, F (U) is an open neighborhood of q in N . Observe now
that H|F (U) = G|U ◦ (F |U)−1 is smooth by part (e) of Exercise 3, Sheet 3, since (F |U)−1

is smooth by assumption and G|U is smooth by part (b) of Exercise 2, Sheet 3. It follows
from part (a) of Exercise 2, Sheet 3 that H is smooth.
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