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Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 5 — Solutions

Exercise 1:

(a) Let (x,y) denote the standard coordinates on R?. Verify that (z,7) are smooth global
coordinates on R?, where

T=x and y=vy+2°
Let p be the point (1,0) € R? (in standard coordinates), and show that
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even though the coordinate functions x and x are identically equal.
(This shows that each coordinate vector 9/0z'|, depends on the entire coordinate
system, not just on the single coordinate function z*.)

(b) Polar coordinates on R*: Consider the map

®: W = (0,+00) x (—7,7) — R?
(r,0) — (rcos@, rsind).

(i) Show that ® is a diffeomorphism onto its image U = &(W).
(Therefore, @' can be considered as a smooth chart on R?, and it is common
to call its component functions the polar coordinates (r,6) on R?.)

(ii) Let p be a point in R? whose polar coordinate representation is (r,0) = (2, 7/2),
and let v € T,R? be the tangent vector whose polar coordinate representation is
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Compute the coordinate representation of v in terms of the standard coordinate
vectors
0 0 ‘
ox|, 9y|,



(c) Spherical coordinates on R3: Consider the map
U: W= (0,400) x (—m,7) x (0,7) = R
(r,0,0) — (rcosesind, rsinpsind, rcosf).

(i) Show that U is a diffeomorphism onto its image U = W (V).

(Therefore, ¥~! can be considered as a smooth chart on R3, and it is common
to call its component functions the spherical coordinates (r,p,0) on R3.)

(ii) Express the coordinate vectors
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of this chart at some point p € U in terms of the standard coordinate vectors
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Solution:

(a) Consider the function
Y R* = R?) (z,y) = (2,y + 2%).
Observe that 1 is smooth and bijective with inverse function
YR = R? (T,7) — (E,ﬂ—fg) ,

which is also smooth. Hence, v is a global smooth coordinate chart on R?; in other words,
its components (7, ) are smooth global coordinates on R?.

We have 9 95
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and hence 3 3 3 5
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(b) We deal with (i) and (ii) separately.

(i) Geometrically, r € (0,+00) is the distance from the origin, and 6 € (—m,7) is
the angle from the negative x-axis. Observe now that the image of ® is the plane
without the non-positive z-axis, that is,

U=oW)={(z,y) e R* |z > 0}.

Note also that &: W — U is bijective with inverse
LU —=W, (z,y) — <\/x2 + 2, arctan E) .
x

Since both ® and ®~! are clearly smooth, we conclude that ®: W — U is a
diffeomorphism.



(i)

We have

and
T\ O 0

% . = —2sin <g> % + 2 cos <§> (9_y , = —2£

so v has the following coordinate representation in standard coordinates:
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(c) We deal with (i) and (ii) separately.

(i)

Geometrically, r € (0,400) is the distance from the origin, ¢ € (—m, ) is the
angle from the x < 0 half of the (x,z)-plane, and # € (0,7) is the angle from
the positive z-axis. Observe now that the image of W is the 3-dimensional space
without the z-axis and the non-positive z-axis, that is,

U=W(W)=R\ ({(0,0,z) eR?|zeR}YU{(z,0,0) €R3|x§0}),

and also that W: W — U is bijective. Furthermore, W is clearly smooth with
Jacobian matrix

cospsing —rsinpsind rcospcost
Jy = | sinpsinf rcospsinf  rsingcosf
cosf 0 —rsinf

and Jacobian determinant
det Jy = —r*sin6,

which does not vanish for any (r,0) € (0,400) x (0,7). Hence, ¥ is a local
diffeomorphism by the inverse function theorem, and since it is bijective, it is
actually a diffeomorphism.

Since
r= (22 + 9 + 22)1/?
and
rsinf = (22 + y*)'/2,
we have
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Exercise 2: Consider the inclusion ¢: S? < R3, where both S? and R? are endowed with
the standard smooth structure. Let p = (p!,p? p?) € S* with p* > 0. What is the image
of the differential du,: T,S* — T,R3?

Solution: Observe that the given point p € S? is contained in the domain of the smooth
chart (U, o3 ) for S?, where

Ui ={(z",2%,2°) e R’ | 2° > 0}
and
o3 U NS? — B2, (21,22 2%) — (2, 27)
with coordinate functions ¢! and ? (defined in the obvious manner), and recall that the
inverse of ¢ is the map

() B = U NS? (u',u? (u u?, /1 — u2)2>,

see Ezample 1.3(2) and Erample 1.8(2). Therefore, the coordinate representation 7 of
t: S§? < R3 with respect to the charts (U, ¢5) and (R3, Idgs) is the function

T(u'u?) = (Idgs o to (¢3) ") (u! = <u1,u2, V1= (ul)? = (u2)2> :

and the coordinate representation p of p € S* is p = ¢(p) = (p', p?). Since the Jacobian
matrix of 7, given by
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represents du,: T,S* — T,R? in the coordinate bases
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we deduce that

0 0 0 p! 0
d, [ 2| | =1.--2| +o0- - :
’ (8901 ) oatl, " 0|, TP+ (PR 00,
_ o] _po
- Ozt » p3 0x3 ’
and
0 0 0 p? 0
di, | =— =0-—| +1- - :
P (8902 p) oxt | x|, /1—(pH)2+ (p?)? 03|,
_ 0| _ro
02 » p3 0x3 ’

Thus, the image of di, is the R-vector space spanned by the above two vectors, which
can be identified with the vectors (1,0, —f}—;) and (0, 1, —z—i), respectively, in R3. It is now
easy to check that this 2-dimensional R-vector space is the orthogonal complement of (p);
namely,

du, (T,8%) = (p)- = {v e R® | (v,p) = 0}.

Exercise 3: Let Mj,..., M} be smooth manifolds. Show that T'(M; x ... x M) is
diffeomorphic to T'(M;) X ... x T(Mjy).

Solution: For each 1 <1 < k, denote by
T - Ml X...XM],C—)MZ'

the projection onto the ¢-the factor. This map is smooth by FEzercise 4, Sheet 3, and
hence its global differential

d(ﬂ'z’>1 T(Ml X ... X Mk) — T'M,

is also a smooth map by Ezercise 4(a). Again by FEzercise 4, Sheet 3 we thus obtain a
smooth map

a: T(My X ...x M) —TM; x ... xTM,

given by a = (d(m),...,d(m)). Note that if p = (p1,...,pk) € My X ... X My, then o
restricted to the fiber T,(M; x ... x M) is just the map defined in Ezercise 3, Sheet 4,
so it is in particular an isomorphism. Therefore, « is bijective. It remains to show that «
is a diffeomorphism. A

To this end, for every 1 < i < k, let (U;, (z]");,) be a smooth chart for M;, and
denote by pr;: TM; — M, the projection. By construction of the tangent bundle,

(pr; ' U, (225, (vf)]) is a smooth coordinate chart, where (v*);, are the coordinates

of a point (p,v) € TM; (with p € U;) in terms of the basis ( 0

87

of T,M;. This yields
p/ Ji

the chart

(prfl Ul XX prl;1 Ukv ((xil)j17 (U{1>j1)7 SR ((m?ck)ﬁc? (Uik%k))



for T(M;) x ... x T'(My). On the other hand, if we denote by
pr: T(My X ... x M) — My x ... x M
the projection, then this also yields the chart
(Pr (U1 X oo X UR), (2] ) (0] )i50)
for T(M; x ... x My). In terms of these charts, the map « is just given by
(@F)agir 0] )ig.) = (@505 (015055 (@) (0050

which is clearly a diffeomorphism. Hence « is locally a diffeomorphism, and as it is
bijective, it is actually a diffecomorphism; see part (f) of Ezercise 4, Sheet 6.

Exercise 4:

(a) Let F': M — N be a smooth map. Show that its global differential dF: TM — TN
(which is just the map whose restriction to each tangent space T,M C T'M is dF,) is
also a smooth map.

(b) Let F: M — N and G: N — P be smooth maps. Prove the following assertions:

(i) d(G o F)=dG odF: TM — TP.
(ii) d(Idps) = Idgas: TM — TM.
(iii) If F is a diffeomorphism, then dF': TM — TN is also a diffeomorphism, and it
holds that (dF)~" = d(F~").
Solution:

(a) Using the local expression for dF), in coordinates,

) OF . 0
dF e = = D I
P (8:61 p) oxt () oy’
we see that dF has the following coordinate representation in terms of natural coordinates
for TM and T'N:

F(p)

(Jo dF oz ') (a!,...,a" v ... ") = (@Zo dF) <vzil

- ~ OF' . 9F",
= <F1(1}), ey Fn(l'), %(Z')’UZ, ey W(’%)UZ) .

Since F' is smooth, and thus its coordinate representation F= 1o F o™t is smooth, the
above coordinate representation of dF' is smooth, and hence dF is smooth, as claimed.

(b) All assertions follow immediately from Ezercise 1, Sheet 4.
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Exercise 5:

(a) Let f: X — S be a map from a topological space X to a set S. Show that if X is
connected and if f is locally constant, i.e., for every x € X there exists a neighborhood
U of z in X such that f|y: U — S is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.|

(b) Let M and N be smooth manifolds and let F': M — N be a smooth map. Assume
that M is connected. Show that dF),: T,M — Tr)N is the zero map for each p € M
if and only if F' is constant.

[Hint: Use (a). You may also use (without proof) the fact that any topological
manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that f: X — S is continuous.
Since then the singletons in S are open, to prove the claim, it suffices to show that the
fibers of f are open subsets of X. Fix s € S and pick z € f~!(s). Since f is locally
constant, there exists an open neighborhood U of z in X such that f|y: U — S is
constant, so for every u € U we have f(u) = f(x) = s, and hence u € f~!(s). Therefore,
the open neighborhood U of x is contained in the fiber f~!(s), i.e., v € U C f~!(s). Since
x € f71(s) was arbitrary, f~!(s) is an open subset of X, and since s € S was arbitrary,
we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S' is also closed, and
thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f
are both closed and open subsets of X, which is a connected space by assumption, and
hence each one of them is either empty or the whole space X. It follows that f is constant.

(b) Assume first that F' is constant and let p € M. For every f € C*°(N), the composite
map f o F: M — R is constant, and hence for every v € T,M, by Lemma 3.5 we have
dF,(v)(f) = v(f o F') = 0. In conclusion, dF, is the zero linear transformation for every
p € M.
Assume now that dF, is the zero map for each p € M. By assumption and by (a),

to prove that F' is constant, it suffices to show that F' is locally constant. Fix p € M.
Since F' is smooth, there are smooth charts (U, ) for M containing p and (V,4) for
N containing F(p) such that F(U) C V and the composite map F = ) o F o ¢! is
smooth. By shrinking U if necessary, we may assume that U is connected, and thus ¢(U)
is also connected. Now, for each ¢ € U we know that the differential dF is represented
in coordinate bases by the Jacobian matrix of F. Since dFy, = O for every ¢ € U by
assumption, we infer that

OF7 . . . .

%(q) =0 for every i, every j, and every ¢ = p(q) € p(U),

and hence F is constant on o(U). Tt follows that F' = po Fow~!is constant on U. Since
p € M was arbitrary, we conclude that F'is locally constant, as desired.



