EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 5 - Solutions

Exercise 1:

(a) Let (x, y) denote the standard coordinates on \mathbb{R}^{2}. Verify that $(\widetilde{x}, \widetilde{y})$ are smooth global coordinates on \mathbb{R}^{2}, where

$$
\widetilde{x}=x \quad \text { and } \quad \widetilde{y}=y+x^{3} .
$$

Let p be the point $(1,0) \in \mathbb{R}^{2}$ (in standard coordinates), and show that

$$
\left.\frac{\partial}{\partial x}\right|_{p} \neq\left.\frac{\partial}{\partial \widetilde{x}}\right|_{p},
$$

even though the coordinate functions x and \widetilde{x} are identically equal.
(This shows that each coordinate vector $\partial /\left.\partial x^{i}\right|_{p}$ depends on the entire coordinate system, not just on the single coordinate function x^{i}.)
(b) Polar coordinates on \mathbb{R}^{2} : Consider the map

$$
\begin{aligned}
\Phi: W:=(0,+\infty) \times(-\pi, \pi) & \rightarrow \mathbb{R}^{2} \\
(r, \theta) & \mapsto(r \cos \theta, r \sin \theta) .
\end{aligned}
$$

(i) Show that Φ is a diffeomorphism onto its image $U:=\Phi(W)$.
(Therefore, Φ^{-1} can be considered as a smooth chart on \mathbb{R}^{2}, and it is common to call its component functions the polar coordinates (r, θ) on \mathbb{R}^{2}.)
(ii) Let p be a point in \mathbb{R}^{2} whose polar coordinate representation is $(r, \theta)=(2, \pi / 2)$, and let $v \in T_{p} \mathbb{R}^{2}$ be the tangent vector whose polar coordinate representation is

$$
v=\left.3 \frac{\partial}{\partial r}\right|_{p}-\left.\frac{\partial}{\partial \theta}\right|_{p} .
$$

Compute the coordinate representation of v in terms of the standard coordinate vectors

$$
\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p} .
$$

(c) Spherical coordinates on \mathbb{R}^{3} : Consider the map

$$
\begin{aligned}
\Psi: W:=(0,+\infty) \times(-\pi, \pi) \times(0, \pi) & \rightarrow \mathbb{R}^{3} \\
(r, \varphi, \theta) & \mapsto(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) .
\end{aligned}
$$

(i) Show that Ψ is a diffeomorphism onto its image $U:=\Psi(W)$.
(Therefore, Ψ^{-1} can be considered as a smooth chart on \mathbb{R}^{3}, and it is common to call its component functions the spherical coordinates (r, φ, θ) on \mathbb{R}^{3}.)
(ii) Express the coordinate vectors

$$
\left.\frac{\partial}{\partial r}\right|_{p},\left.\frac{\partial}{\partial \varphi}\right|_{p},\left.\frac{\partial}{\partial \theta}\right|_{p}
$$

of this chart at some point $p \in U$ in terms of the standard coordinate vectors

$$
\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p},\left.\frac{\partial}{\partial z}\right|_{p}
$$

Solution:

(a) Consider the function

$$
\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(x, y+x^{3}\right)
$$

Observe that ψ is smooth and bijective with inverse function

$$
\psi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(\widetilde{x}, \widetilde{y}) \mapsto\left(\widetilde{x}, \widetilde{y}-\widetilde{x}^{3}\right)
$$

which is also smooth. Hence, ψ is a global smooth coordinate chart on \mathbb{R}^{2}; in other words, its components $(\widetilde{x}, \widetilde{y})$ are smooth global coordinates on \mathbb{R}^{2}.

We have

$$
\frac{\partial \widetilde{x}}{\partial x}(x, y)=1 \quad \text { and } \quad \frac{\partial \widetilde{y}}{\partial x}(x, y)=3 x^{2}
$$

and hence

$$
\left.\frac{\partial}{\partial x}\right|_{p}=\left.1 \cdot \frac{\partial}{\partial \widetilde{x}}\right|_{p}+\left.3 \cdot \frac{\partial}{\partial \widetilde{y}}\right|_{p} \neq\left.\frac{\partial}{\partial \widetilde{x}}\right|_{p}
$$

(b) We deal with (i) and (ii) separately.
(i) Geometrically, $r \in(0,+\infty)$ is the distance from the origin, and $\theta \in(-\pi, \pi)$ is the angle from the negative x-axis. Observe now that the image of Φ is the plane without the non-positive x-axis, that is,

$$
U=\Phi(W)=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}
$$

Note also that $\Phi: W \rightarrow U$ is bijective with inverse

$$
\Phi^{-1}: U \rightarrow W,(x, y) \mapsto\left(\sqrt{x^{2}+y^{2}}, \arctan \frac{y}{x}\right) .
$$

Since both Φ and Φ^{-1} are clearly smooth, we conclude that $\Phi: W \rightarrow U$ is a diffeomorphism.
(ii) We have

$$
\left.\frac{\partial}{\partial r}\right|_{p}=\left.\cos \left(\frac{\pi}{2}\right) \frac{\partial}{\partial x}\right|_{p}+\left.\sin \left(\frac{\pi}{2}\right) \frac{\partial}{\partial y}\right|_{p}=\left.\frac{\partial}{\partial y}\right|_{p}
$$

and

$$
\left.\frac{\partial}{\partial \theta}\right|_{p}=-\left.2 \sin \left(\frac{\pi}{2}\right) \frac{\partial}{\partial x}\right|_{p}+\left.2 \cos \left(\frac{\pi}{2}\right) \frac{\partial}{\partial y}\right|_{p}=-\left.2 \frac{\partial}{\partial x}\right|_{p},
$$

so v has the following coordinate representation in standard coordinates:

$$
v=\left.2 \frac{\partial}{\partial x}\right|_{p}+\left.3 \frac{\partial}{\partial y}\right|_{p} .
$$

(c) We deal with (i) and (ii) separately.
(i) Geometrically, $r \in(0,+\infty)$ is the distance from the origin, $\varphi \in(-\pi, \pi)$ is the angle from the $x<0$ half of the (x, z)-plane, and $\theta \in(0, \pi)$ is the angle from the positive z-axis. Observe now that the image of Ψ is the 3 -dimensional space without the z-axis and the non-positive x-axis, that is,

$$
U=\Psi(W)=\mathbb{R}^{3} \backslash\left(\left\{(0,0, z) \in \mathbb{R}^{3} \mid z \in \mathbb{R}\right\} \cup\left\{(x, 0,0) \in \mathbb{R}^{3} \mid x \leq 0\right\}\right)
$$

and also that $\Psi: W \rightarrow U$ is bijective. Furthermore, Ψ is clearly smooth with Jacobian matrix

$$
J_{\Psi}=\left(\begin{array}{ccc}
\cos \varphi \sin \theta & -r \sin \varphi \sin \theta & r \cos \varphi \cos \theta \\
\sin \varphi \sin \theta & r \cos \varphi \sin \theta & r \sin \varphi \cos \theta \\
\cos \theta & 0 & -r \sin \theta
\end{array}\right)
$$

and Jacobian determinant

$$
\operatorname{det} J_{\Psi}=-r^{2} \sin \theta,
$$

which does not vanish for any $(r, \theta) \in(0,+\infty) \times(0, \pi)$. Hence, Ψ is a local diffeomorphism by the inverse function theorem, and since it is bijective, it is actually a diffeomorphism.
(ii) Since

$$
r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}
$$

and

$$
r \sin \theta=\left(x^{2}+y^{2}\right)^{1 / 2}
$$

we have

$$
\begin{aligned}
\left.\frac{\partial}{\partial r}\right|_{p} & =\left.\frac{\partial x}{\partial r} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial r} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial r} \frac{\partial}{\partial z}\right|_{p} \\
& =\left.\cos \varphi \sin \theta \frac{\partial}{\partial x}\right|_{p}+\left.\sin \varphi \sin \theta \frac{\partial}{\partial y}\right|_{p}+\left.\cos \theta \frac{\partial}{\partial z}\right|_{p} \\
& =\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\left(\left.x \frac{\partial}{\partial x}\right|_{p}+\left.y \frac{\partial}{\partial y}\right|_{p}+\left.z \frac{\partial}{\partial z}\right|_{p}\right),
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{\partial}{\partial \varphi}\right|_{p} & =\left.\frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial \varphi} \frac{\partial}{\partial z}\right|_{p} \\
& =-\left.r \sin \varphi \sin \theta \frac{\partial}{\partial x}\right|_{p}+\left.r \cos \varphi \sin \theta \frac{\partial}{\partial y}\right|_{p} \\
& =-\left.y \frac{\partial}{\partial x}\right|_{p}+\left.x \frac{\partial}{\partial y}\right|_{p}
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\frac{\partial}{\partial \theta}\right|_{p} & =\left.\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial \theta} \frac{\partial}{\partial z}\right|_{p} \\
& =\left.r \cos \varphi \cos \theta \frac{\partial}{\partial x}\right|_{p}+\left.r \sin \varphi \cos \theta \frac{\partial}{\partial y}\right|_{p}-\left.r \sin \theta \frac{\partial}{\partial z}\right|_{p} \\
& =\left.\frac{x z}{\left(x^{2}+y^{2}\right)^{1 / 2}} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{y z}{\left(x^{2}+y^{2}\right)^{1 / 2}} \frac{\partial}{\partial y}\right|_{p}-\left.\left(x^{2}+y^{2}\right)^{1 / 2} \frac{\partial}{\partial z}\right|_{p} .
\end{aligned}
$$

Exercise 2: Consider the inclusion $\iota: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$, where both \mathbb{S}^{2} and \mathbb{R}^{3} are endowed with the standard smooth structure. Let $p=\left(p^{1}, p^{2}, p^{3}\right) \in \mathbb{S}^{2}$ with $p^{3}>0$. What is the image of the differential $d \iota_{p}: T_{p} \mathbb{S}^{2} \rightarrow T_{p} \mathbb{R}^{3}$?

Solution: Observe that the given point $p \in \mathbb{S}^{2}$ is contained in the domain of the smooth chart $\left(U_{3}^{+}, \varphi_{3}^{+}\right)$for \mathbb{S}^{2}, where

$$
U_{3}^{+}=\left\{\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3} \mid x^{3}>0\right\}
$$

and

$$
\varphi_{3}^{+}: U_{3}^{+} \cap \mathbb{S}^{2} \rightarrow \mathbb{B}^{2},\left(x^{1}, x^{2}, x^{3}\right) \mapsto\left(x^{1}, x^{2}\right)
$$

with coordinate functions φ^{1} and φ^{2} (defined in the obvious manner), and recall that the inverse of φ_{3}^{+}is the map

$$
\left(\varphi_{3}^{+}\right)^{-1}: \mathbb{B}^{2} \rightarrow U_{3}^{+} \cap \mathbb{S}^{2},\left(u^{1}, u^{2}\right) \mapsto\left(u^{1}, u^{2}, \sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}\right)
$$

see Example $1.3(2)$ and Example 1.8(2). Therefore, the coordinate representation $\widehat{\imath}$ of $\iota: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$ with respect to the charts $\left(U_{3}^{+}, \varphi_{3}^{+}\right)$and $\left(\mathbb{R}^{3}, \operatorname{Id}_{\mathbb{R}^{3}}\right)$ is the function

$$
\widehat{\iota}\left(u^{1}, u^{2}\right)=\left(\operatorname{Id}_{\mathbb{R}^{3}} \circ \iota \circ\left(\varphi_{3}^{+}\right)^{-1}\right)\left(u^{1}, u^{2}\right)=\left(u^{1}, u^{2}, \sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}\right),
$$

and the coordinate representation \widehat{p} of $p \in \mathbb{S}^{2}$ is $\widehat{p}=\varphi(p)=\left(p^{1}, p^{2}\right)$. Since the Jacobian matrix of $\widehat{\iota}$, given by

$$
J\left(u^{1}, u^{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-\frac{u^{1}}{\sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}} & -\frac{u^{2}}{\sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}}
\end{array}\right)
$$

represents $d \iota_{p}: T_{p} \mathbb{S}^{2} \rightarrow T_{p} \mathbb{R}^{3}$ in the coordinate bases

$$
\left\{\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p},\left.\frac{\partial}{\partial \varphi^{2}}\right|_{p}\right\} \subseteq T_{p} \mathbb{S}^{2} \quad \text { and } \quad\left\{\left.\frac{\partial}{\partial x^{1}}\right|_{p},\left.\frac{\partial}{\partial x^{2}}\right|_{p},\left.\frac{\partial}{\partial x^{3}}\right|_{p}\right\} \subseteq T_{p} \mathbb{R}^{3}
$$

we deduce that

$$
\begin{aligned}
d \iota_{p}\left(\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}\right) & =\left.1 \cdot \frac{\partial}{\partial x^{1}}\right|_{p}+\left.0 \cdot \frac{\partial}{\partial x^{2}}\right|_{p}-\left.\frac{p^{1}}{\sqrt{1-\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2}}} \cdot \frac{\partial}{\partial x^{3}}\right|_{p} \\
& =\left.\frac{\partial}{\partial x^{1}}\right|_{p}-\left.\frac{p^{1}}{p^{3}} \frac{\partial}{\partial x^{3}}\right|_{p}
\end{aligned}
$$

and

$$
\begin{aligned}
d \iota_{p}\left(\left.\frac{\partial}{\partial \varphi^{2}}\right|_{p}\right) & =\left.0 \cdot \frac{\partial}{\partial x^{1}}\right|_{p}+\left.1 \cdot \frac{\partial}{\partial x^{2}}\right|_{p}-\left.\frac{p^{2}}{\sqrt{1-\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2}}} \cdot \frac{\partial}{\partial x^{3}}\right|_{p} \\
& =\left.\frac{\partial}{\partial x^{2}}\right|_{p}-\left.\frac{p^{2}}{p^{3}} \frac{\partial}{\partial x^{3}}\right|_{p} .
\end{aligned}
$$

Thus, the image of $d \iota_{p}$ is the \mathbb{R}-vector space spanned by the above two vectors, which can be identified with the vectors $\left(1,0,-\frac{p^{1}}{p^{3}}\right)$ and $\left(0,1,-\frac{p^{2}}{p^{3}}\right)$, respectively, in \mathbb{R}^{3}. It is now easy to check that this 2 -dimensional \mathbb{R}-vector space is the orthogonal complement of $\langle p\rangle$; namely,

$$
d \iota_{p}\left(T_{p} \mathbb{S}^{2}\right)=\langle p\rangle^{\perp} \cong\left\{v \in \mathbb{R}^{3} \mid\langle v, p\rangle=0\right\} .
$$

Exercise 3: Let M_{1}, \ldots, M_{k} be smooth manifolds. Show that $T\left(M_{1} \times \ldots \times M_{k}\right)$ is diffeomorphic to $T\left(M_{1}\right) \times \ldots \times T\left(M_{k}\right)$.

Solution: For each $1 \leq i \leq k$, denote by

$$
\pi_{i}: M_{1} \times \ldots \times M_{k} \rightarrow M_{i}
$$

the projection onto the i-the factor. This map is smooth by Exercise 4, Sheet 3, and hence its global differential

$$
d\left(\pi_{i}\right): T\left(M_{1} \times \ldots \times M_{k}\right) \rightarrow T M_{i}
$$

is also a smooth map by Exercise 4(a). Again by Exercise 4, Sheet 3 we thus obtain a smooth map

$$
\alpha: T\left(M_{1} \times \ldots \times M_{k}\right) \rightarrow T M_{1} \times \ldots \times T M_{k}
$$

given by $\alpha=\left(d\left(\pi_{1}\right), \ldots, d\left(\pi_{k}\right)\right)$. Note that if $p=\left(p_{1}, \ldots, p_{k}\right) \in M_{1} \times \ldots \times M_{k}$, then α restricted to the fiber $T_{p}\left(M_{1} \times \ldots \times M_{k}\right)$ is just the map defined in Exercise 3, Sheet 4, so it is in particular an isomorphism. Therefore, α is bijective. It remains to show that α is a diffeomorphism.

To this end, for every $1 \leq i \leq k$, let $\left(U_{i},\left(x_{i}^{j_{i}}\right)_{j_{i}}\right)$ be a smooth chart for M_{i}, and denote by $\mathrm{pr}_{i}: T M_{i} \rightarrow M_{i}$ the projection. By construction of the tangent bundle, $\left(\operatorname{pr}_{i}^{-1} U_{i},\left(x_{i}^{j_{i}}\right)_{j_{i}},\left(v_{i}^{j_{i}}\right)_{j_{i}}\right)$ is a smooth coordinate chart, where $\left(v_{i}^{j_{i}}\right)_{j_{i}}$ are the coordinates of a point $(p, v) \in T M_{i}$ (with $\left.p \in U_{i}\right)$ in terms of the basis $\left(\left.\frac{\partial}{\partial x_{i}^{j_{i}}}\right|_{p}\right)_{j_{i}}$ of $T_{p} M_{i}$. This yields the chart

$$
\left(\operatorname{pr}_{1}^{-1} U_{1} \times \ldots \times \operatorname{pr}_{k}^{-1} U_{k},\left(\left(x_{1}^{j_{1}}\right)_{j_{1}},\left(v_{1}^{j_{1}}\right)_{j_{1}}\right), \ldots,\left(\left(x_{k}^{j_{k}}\right)_{j_{k}},\left(v_{k}^{j_{k}}\right)_{j_{k}}\right)\right)
$$

for $T\left(M_{1}\right) \times \ldots \times T\left(M_{k}\right)$. On the other hand, if we denote by

$$
\operatorname{pr}: T\left(M_{1} \times \ldots \times M_{k}\right) \rightarrow M_{1} \times \ldots \times M_{k}
$$

the projection, then this also yields the chart

$$
\left(\operatorname{pr}^{-1}\left(U_{1} \times \ldots \times U_{k}\right),\left(x_{i}^{j_{i}}\right)_{i j_{i}},\left(v_{i}^{j_{i}}\right)_{i j_{i}}\right)
$$

for $T\left(M_{1} \times \ldots \times M_{k}\right)$. In terms of these charts, the map α is just given by

$$
\left(\left(x_{i}^{j_{i}}\right)_{i j_{i}},\left(v_{i}^{j_{i}}\right)_{i_{j_{i}}}\right) \mapsto\left(\left(x_{1}^{j_{1}}\right)_{j_{1}},\left(v_{1}^{j_{1}}\right)_{j_{1}}, \ldots,\left(x_{k}^{j_{k}}\right)_{j_{k}},\left(v_{k}^{j_{k}}\right)_{j_{k}}\right)
$$

which is clearly a diffeomorphism. Hence α is locally a diffeomorphism, and as it is bijective, it is actually a diffeomorphism; see part (f) of Exercise 4, Sheet 6.

Exercise 4:

(a) Let $F: M \rightarrow N$ be a smooth map. Show that its global differential $d F: T M \rightarrow T N$ (which is just the map whose restriction to each tangent space $T_{p} M \subseteq T M$ is $d F_{p}$) is also a smooth map.
(b) Let $F: M \rightarrow N$ and $G: N \rightarrow P$ be smooth maps. Prove the following assertions:
(i) $d(G \circ F)=d G \circ d F: T M \rightarrow T P$.
(ii) $d\left(\operatorname{Id}_{M}\right)=\mathrm{Id}_{T M}: T M \rightarrow T M$.
(iii) If F is a diffeomorphism, then $d F: T M \rightarrow T N$ is also a diffeomorphism, and it holds that $(d F)^{-1}=d\left(F^{-1}\right)$.

Solution:

(a) Using the local expression for $d F_{p}$ in coordinates,

$$
d F_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\frac{\partial \widehat{F}^{j}}{\partial x^{i}}(\widehat{p}) \frac{\partial}{\partial y^{j}}\right|_{F(p)},
$$

we see that $d F$ has the following coordinate representation in terms of natural coordinates for $T M$ and $T N$:

$$
\begin{aligned}
\left(\widetilde{\psi} \circ d F \circ \widetilde{\varphi}^{-1}\right)\left(x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}\right) & =(\widetilde{\psi} \circ d F)\left(\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{\varphi^{-1}(x)}\right) \\
& =\widetilde{\psi}\left(\left.v^{i} \frac{\partial \widehat{F}^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}\right|_{F \circ \varphi^{-1}(x)}\right) \\
& =\left(\widehat{F}^{1}(x), \ldots, \widehat{F}^{n}(x), \frac{\partial \widehat{F}^{1}}{\partial x^{i}}(x) v^{i}, \ldots, \frac{\partial \widehat{F}^{n}}{\partial x^{i}}(x) v^{i}\right) .
\end{aligned}
$$

Since F is smooth, and thus its coordinate representation $\widehat{F}=\psi \circ F \circ \varphi^{-1}$ is smooth, the above coordinate representation of $d F$ is smooth, and hence $d F$ is smooth, as claimed.
(b) All assertions follow immediately from Exercise 1, Sheet 4.

Exercise 5:

(a) Let $f: X \rightarrow S$ be a map from a topological space X to a set S. Show that if X is connected and if f is locally constant, i.e., for every $x \in X$ there exists a neighborhood U of x in X such that $\left.f\right|_{U}: U \rightarrow S$ is constant, then f is constant.
[Hint: Show that f is continuous when S is endowed with the discrete topology.]
(b) Let M and N be smooth manifolds and let $F: M \rightarrow N$ be a smooth map. Assume that M is connected. Show that $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is the zero map for each $p \in M$ if and only if F is constant.
[Hint: Use (a). You may also use (without proof) the fact that any topological manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that $f: X \rightarrow S$ is continuous. Since then the singletons in S are open, to prove the claim, it suffices to show that the fibers of f are open subsets of X. Fix $s \in S$ and pick $x \in f^{-1}(s)$. Since f is locally constant, there exists an open neighborhood U of x in X such that $\left.f\right|_{U}: U \rightarrow S$ is constant, so for every $u \in U$ we have $f(u)=f(x)=s$, and hence $u \in f^{-1}(s)$. Therefore, the open neighborhood U of x is contained in the fiber $f^{-1}(s)$, i.e., $x \in U \subseteq f^{-1}(s)$. Since $x \in f^{-1}(s)$ was arbitrary, $f^{-1}(s)$ is an open subset of X, and since $s \in S$ was arbitrary, we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S is also closed, and thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f are both closed and open subsets of X, which is a connected space by assumption, and hence each one of them is either empty or the whole space X. It follows that f is constant.
(b) Assume first that F is constant and let $p \in M$. For every $f \in C^{\infty}(N)$, the composite map $f \circ F: M \rightarrow \mathbb{R}$ is constant, and hence for every $v \in T_{p} M$, by Lemma 3.5 we have $d F_{p}(v)(f)=v(f \circ F)=0$. In conclusion, $d F_{p}$ is the zero linear transformation for every $p \in M$.

Assume now that $d F_{p}$ is the zero map for each $p \in M$. By assumption and by (a), to prove that F is constant, it suffices to show that F is locally constant. Fix $p \in M$. Since F is smooth, there are smooth charts (U, φ) for M containing p and (V, ψ) for N containing $F(p)$ such that $F(U) \subseteq V$ and the composite map $\widehat{F}=\psi \circ F \circ \varphi^{-1}$ is smooth. By shrinking U if necessary, we may assume that U is connected, and thus $\varphi(U)$ is also connected. Now, for each $q \in U$ we know that the differential $d F_{q}$ is represented in coordinate bases by the Jacobian matrix of \widehat{F}. Since $d F_{q}=\mathbb{O}$ for every $q \in U$ by assumption, we infer that

$$
\frac{\partial \widehat{F}^{j}}{\partial x^{i}}(\widehat{q})=0 \quad \text { for every } i, \text { every } j, \text { and every } \widehat{q}=\varphi(q) \in \varphi(U)
$$

and hence \widehat{F} is constant on $\varphi(U)$. It follows that $F=\varphi \circ \widehat{F} \circ \psi^{-1}$ is constant on U. Since $p \in M$ was arbitrary, we conclude that F is locally constant, as desired.

