

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 4 – Solutions

Exercise 1: Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$. Prove the following assertions:

- (a) The map $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_p M \to T_{(G \circ F)(p)} P.$
- (c) $d(\mathrm{Id}_M)_p = \mathrm{Id}_{T_pM} \colon T_pM \to T_pM.$
- (d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and it holds that $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Solution:

(a) Let $v, w \in T_pM$ and $\lambda, \mu \in \mathbb{R}$. For any $f \in C^{\infty}(N)$, we have

$$dF_p(\lambda v + \mu w)(f) = (\lambda v + \mu w)(f \circ F)$$

= $\lambda v(f \circ F) + \mu w(f \circ F)$
= $\lambda dF_p(v)(f) + \mu dF_p(w)(f)$
= $(\lambda dF_p(v) + \mu dF_p(w))(f),$

which implies

$$dF_p(\lambda v + \mu w) = \lambda \, dF_p(v) + \mu \, dF_p(w).$$

(b) For any $v \in T_p M$ and any $f \in C^{\infty}(P)$, we have

$$d(G \circ F)_p(v)(f) = v(f \circ (G \circ F)) = v((f \circ G) \circ F)$$

= $dF_p(v)(f \circ G)$
= $dG_{F(p)}(dF_p(v))(f)$
= $(dG_{F(p)} \circ dF_p)(v)(f),$

and thus

$$d(G \circ F)_p(v) = \left(dG_{F(p)} \circ dF_p \right)(v),$$

which yields the assertion.

(c) For any $v \in T_p M$ and any $f \in C^{\infty}(M)$, we have

$$d(\mathrm{Id}_M)_p(v)(f) = v(f \circ \mathrm{Id}_M) = v(f),$$

and hence

$$d(\mathrm{Id}_M)_p(v) = v = \mathrm{Id}_{T_pM}(v),$$

which proves the claim.

(d) Since F is a diffeomorphism, we have

$$F \circ F^{-1} = \mathrm{Id}_N$$
 and $F^{-1} \circ F = \mathrm{Id}_M$

so by (b) and (c) we obtain

$$\mathrm{Id}_{T_pM} = d(\mathrm{Id}_M)_p = d\left(F^{-1} \circ F\right)_p = d\left(F^{-1}\right)_{F(p)} \circ dF_p$$

and

$$\mathrm{Id}_{T_{F(p)}N} = d(\mathrm{Id}_N)_{F(p)} = d(F \circ F^{-1})_{F(p)} = dF_p \circ d(F^{-1})_{F(p)}.$$

Hence, dF_p is an \mathbb{R} -linear isomorphism with inverse

$$(dF_p)^{-1} = d(F^{-1})_{F(p)}$$

Remark. For those familiar with categorical language, let us put *Exercise* 1 into context. Let $\mathbf{Man}^{\infty}_{*}$ be the category of pointed smooth manifolds, i.e., the category whose objects are pairs (M, p), where M is a smooth manifold and $p \in M$, and whose morphisms $F: (M, p) \to (N, q)$ are smooth maps $F: M \to N$ with F(p) = q. Also, denote by $\mathbf{Vect}_{\mathbb{R}}$ the category of \mathbb{R} -vector spaces. Parts (a), (b) and (c) of the above exercise show that the assignment $T: \mathbf{Man}^{\infty}_{*} \to \mathbf{Vect}_{\mathbb{R}}$, which to a pointed smooth manifold (M, p) assigns the tangent space $T(M, p) = T_pM$ and which to a smooth map $F: (M, p) \to (N, q)$ assigns the differential $T(F) = dF_p$ of F at p, is a covariant functor. It is a general fact that functors send isomorphisms to isomorphisms, and that $T(F^{-1}) = T(F)^{-1}$, which is why part (d) of *Exercise* 1 is a formal consequence of the previous parts.

Exercise 2: Let V be a finite-dimensional \mathbb{R} -vector space with its standard smooth manifold structure, see *Exercise* 3, *Sheet* 2. Fix a point $a \in V$.

(a) For each $v \in V$ define a map

$$D_v|_a \colon C^{\infty}(V) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}\Big|_{t=0} f(a+tv).$$

Show that $D_v|_a$ is a derivation at a.

(b) Show that the map

$$V \to T_a V, v \mapsto D_v |_a$$

is a canonical isomorphism, such that for any linear map $L: V \to W$ the following diagram commutes:

Solution:

(a) Choose a basis E_1, \ldots, E_n of V and let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let $\varphi \colon \mathbb{R}^n \to V$ be the induced isomorphism, which is a diffeomorphism by definition of the standard smooth structure. Let $\vec{a} \coloneqq \varphi^{-1}(a)$ and $\vec{v} \coloneqq \varphi^{-1}(v)$. By *Exercise* 1, the differential $d\varphi_{\vec{a}}$ is an isomorphism from $T_{\vec{a}}\mathbb{R}^n$ to T_aV . Now, as shown in the lecture, the map

$$\widehat{D}_{\vec{v}}\Big|_{\vec{a}} \colon C^{\infty}(\mathbb{R}^n) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}\Big|_{t=0} f(\vec{a} + t\vec{v})$$

is a derivation. Let us prove that $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}}) = D_v|_a$ as functions from $C^{\infty}(V)$ to \mathbb{R} , thereby proving that $D_v|_a$ is a derivation, as $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}})$ is so. To this end, let $f \in C^{\infty}(V)$. Then

$$d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}\big|_{\vec{a}})(f) = \widehat{D}_{\vec{v}}\big|_{\vec{a}}(f \circ \varphi) = \frac{d}{dt}\Big|_{t=0}(f \circ \varphi)(\vec{a} + t\vec{v}) = \frac{d}{dt}\Big|_{t=0}f(a + tv) = D_v\big|_a(f).$$

As f was arbitrary, we conclude that $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}}) = D_v|_a$; in particular, $D_v|_a$ is a derivation of $C^{\infty}(V)$ at a.

(b) Denote by $\eta_{(V,a)} \colon V \to T_a V$ the map $v \mapsto D_v |_a$. In part (a) we proved that

$$d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n, \vec{a})}(\vec{v}) = \eta_{(V, \varphi(\vec{a}))} \circ \varphi(\vec{v})$$

for all $\vec{a}, \vec{v} \in \mathbb{R}^n$. In other words, we have $d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n,\vec{a})} = \eta_{(V,\varphi(\vec{a}))} \circ \varphi$. In particular, since in the lecture we already saw that $\eta_{(\mathbb{R}^n,\vec{a})}$ is an isomorphism, and as $d\varphi_{\vec{a}}$ and φ are isomorphisms as well, we conclude that $\eta_{(V,\varphi(\vec{a}))}$ is an isomorphism.

It remains to check the above diagram commutes. Firstly, since L is linear, it is in particular smooth (all first order partial derivatives with respect to some basis exist and are constant, and all higher order partial derivatives vanish). Now, let $v \in V$ and $f \in C^{\infty}(W)$ be arbitrary. We have

$$(dL_a \circ \eta_{(V,a)}(v))(f) = dL_a(D_v|_a)(f) = D_v|_a(f \circ L) = \frac{d}{dt}\Big|_{t=0} f(L(a+tv)) = \frac{d}{dt}\Big|_{t=0} f(La+tLv) = D_{Lv}\Big|_{La}(f) = \eta_{(W,La)}(Lv)(f) = (\eta_{(W,La)} \circ L(v))(f).$$

As v and f were arbitrary, we conclude that

$$dL_a \circ \eta_{(V,a)} = \eta_{(W,La)} \circ L;$$

in other words, the diagram in part (b) is commutative.

Remark. Again, for those familiar with categorical language, let us put *Exercise* 2 into context. The category $\operatorname{Man}_*^{\infty}$ of pointed smooth manifolds described in the previous remark has the category $\operatorname{Vect}_{\mathbb{R},*}$ of pointed vector spaces (only with linear maps between them, so not a full subcategory) as a subcategory. Therefore, the tangent space yields a functor $T: \operatorname{Vect}_{\mathbb{R},*} \to \operatorname{Vect}_{\mathbb{R}}$ by restricting to this subcategory. But there is also another natural functor between these two categories, namely the forgetful functor $U: \operatorname{Vect}_{\mathbb{R},*} \to \operatorname{Vect}_{\mathbb{R}}$ which to a pointed vector space (V, a) associates the underlying vector space V, and to a linear map $L: (V, a) \to (W, b)$ (i.e., a linear map with La = b) associates the linear map $L: V \to W$. In the preceding exercise, we showed that η_{\bullet} is a natural transformation from U to T (by showing that the given diagram commutes), and in fact that it is a natural isomorphism (by showing that each individual map $\eta_{(V,a)}: U(V, a) \to T(V, a)$ is an isomorphism).

Exercise 3: Let M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$. For each $j \in \{1, \ldots, k\}$, let

$$\pi_i \colon M_1 \times \ldots \times M_k \to M_j$$

be the projection onto the *j*-th factor M_j . Show that for any point $p = (p_1, \ldots, p_k) \in M_1 \times \ldots \times M_k$, the map

$$\alpha \colon T_p(M_1 \times \ldots \times M_k) \longrightarrow T_{p_1} M_1 \oplus \ldots \oplus T_{p_k} M_k$$
$$v \mapsto (d(\pi_1)_p(v), \ldots, d(\pi_k)_p(v))$$

is an \mathbb{R} -linear isomorphism.

Solution: The map α is linear; indeed, this follows readily from the fact that every component $d(\pi_j)_p$ is linear. Note also that both vector spaces have dimension $\sum_i \dim M_i$, so to prove that α is an isomorphism, it suffices to prove that it is surjective. We will achieve this by constructing a right-inverse to α .

To this end, for each $1 \leq j \leq k$, define the map

$$\iota_j \colon M_j \to M_1 \times \ldots \times M_k$$
$$m_j \mapsto (p_1, \ldots, p_{j-1}, m_j, p_{j+1}, \ldots, p_k).$$

By part (b) of *Exercise* 4, Sheet 3 we infer that ι_j is smooth, because $\pi_{j'} \circ \iota_j$ is either constant or the identity (so in particular smooth) for all $1 \leq j' \leq k$, with $\iota_j(p_j) = p$, so we obtain a map

$$d(\iota_j)_{p_j} \colon T_{p_j} M_j \to T_p(M_1 \times \ldots \times M_k)$$

We now define the following map:

$$\beta \colon T_{p_1}M_1 \oplus \ldots \oplus T_{p_k}M_k \to T_p(M_1 \times \ldots \times M_k)$$
$$(v_1, \ldots, v_k) \mapsto d(\iota_1)_{p_1}(v_1) + \ldots + d(\iota_k)_{p_k}(v_k).$$

and we will show that β is a right-inverse for α . To this end, let

$$(v_1,\ldots,v_k)\in T_{p_1}M_1\oplus\ldots\oplus T_{p_k}M_k$$

Then

$$\alpha \circ \beta(v_1, \dots, v_k) = \alpha \left(\sum_j d(\iota_j)_{p_j}(v_j) \right) = \sum_j \alpha \left(d(\iota_j)_{p_j}(v_j) \right). \tag{*}$$

Now, let $1 \leq i, j \leq k$ be arbitrary. Note that

$$d(\pi_i)_p\left(d(\iota_j)_{p_j}(v_j)\right) = d(\pi_i \circ \iota_j)_{p_j}(v_j) = \delta_{ij}v_j,\tag{**}$$

because if $i \neq j$, then $\pi_i \circ \iota_j$ is constant and thus has 0 differential by Lemma 3.5(a) (see also Exercise 5, Sheet 5), and if i = j, then $\pi_i \circ \iota_j = \mathrm{Id}_{M_j}$ and thus its differential is the identity by Exercise 1(c). Thus, by (*) and (**) we obtain

$$(\alpha \circ \beta)(v_1, \ldots, v_k) = \sum_j (\delta_{1j}v_1, \ldots, \delta_{kj}v_k) = (v_1, \ldots, v_k),$$

and since (v_1, \ldots, v_k) was arbitrary, we conclude that $\alpha \circ \beta = \text{Id.}$ It follows that α is surjective, and hence an isomorphism, as explained above.

Exercise 4: Let M be a smooth manifold and let p be a point of M.

(a) Consider the set \mathcal{S} of ordered pairs (U, f), where U is an open subset of M containing p and $f: U \to \mathbb{R}$ is a smooth function. Define on \mathcal{S} the following relation:

 $(U, f) \sim (V, g)$ if $f \equiv g$ on some open neighborhood of p.

Show that \sim is an equivalence relation on S. The equivalence class of an ordered pair (U, f) is denoted by [(U, f)] or simply by $[f]_p$ and is called *the germ of f at p*.

(b) The set of all germs of smooth functions at p is denoted by $C_p^{\infty}(M)$. Show that $C_p^{\infty}(M)$ is an \mathbb{R} -vector space and an associative \mathbb{R} -algebra under the operations

$$c[(U, f)] = [(U, cf)], \text{ where } c \in \mathbb{R},$$
$$[(U, f)] + [(V, g)] = [(U \cap V, f + g)],$$
$$[(U, f)][(V, g)] = [(U \cap V, fg)].$$

(c) A derivation of $C_p^{\infty}(M)$ is an \mathbb{R} -linear map $v \colon C_p^{\infty}(M) \to \mathbb{R}$ satisfying the following product rule:

 $v[fg]_p = f(p)v[g]_p + g(p)v[f]_p.$

The set of derivations of $C_p^{\infty}(M)$ is denoted by $\mathcal{D}_p M$.

- (i) Show that $\mathcal{D}_p M$ is an \mathbb{R} -vector space.
- (ii) Show that the map

$$\Phi \colon \mathcal{D}_p M \to T_p M, \ \Phi(v)(f) = v[f]_p$$

is an isomorphism.

Solution:

(a) Straightforward.

(b) Straightforward. Note that the zero element of the \mathbb{R} -vector space (or the associative and commutative \mathbb{R} -algebra) $C_p^{\infty}(M)$ is the class $[(M, \mathbb{O})]$, where

$$\mathbb{O}\colon M\to\mathbb{R},\ x\mapsto 0$$

is the constant function with value 0 on M, which is smooth by *Exercise* 3, *Sheet* 3, and the unit of the \mathbb{R} -algebra $C_p^{\infty}(M)$ is the class $[(M, \mathbb{I})]$, where

$$\mathbb{I}\colon M\to\mathbb{R},\ x\mapsto 1$$

is the constant function with value 1 on M, which is smooth by *Exercise* 3, *Sheet* 3.

(c) We first prove (i). Clearly, it suffices to show that $\mathcal{D}_p M$ is a vector subspace of the vector space of linear maps $C_p^{\infty}(M) \to \mathbb{R}$ (the dual of $C_p^{\infty}(M)$). In other words, if $\lambda_1, \lambda_2 \in \mathbb{R}$ and $v_1, v_2 \in \mathcal{D}_p M$, we have to show that $\lambda_1 v_1 + \lambda_2 v_2$ satisfies the product rule. To this end, let $[f]_p, [g]_p \in C_p^{\infty}(M)$ be arbitrary. Then

$$\begin{aligned} (\lambda_1 v_1 + \lambda_2 v_2) ([fg]_p) &= \lambda_1 v_1 ([fg]_p) + \lambda_2 v_2 ([fg]_p) \\ &= \lambda_1 (f(p) v_1 [g]_p + g(p) v_1 [f]_p) + \lambda_2 (f(p) v_2 [g]_p + g(p) v_2 [f]_p) \\ &= f(p) (\lambda_1 v_1 + \lambda_2 v_2) ([g]_p) + g(p) (\lambda_1 v_1 + \lambda_2 v_2) ([f]_p). \end{aligned}$$

Hence, $\lambda_1 v_1 + \lambda_2 v_2 \in \mathcal{D}_p M$.

We now prove (ii). First of all, the assertion that $\Phi(v): C^{\infty}(M) \to \mathbb{R}$ is a derivation follows from the fact that

$$[\bullet]_p \colon C^{\infty}(M) \to C_p^{\infty}(M)$$

 $f \mapsto [f]_p$

is a homomorphism of \mathbb{R} -algebras, and thus if $v \in \mathcal{D}_p M$ is a derivation of $C_p^{\infty}(M)$, then $\Phi(v) = v \circ [\bullet]_p$ is a derivation of $C^{\infty}(M)$. Furthermore, Φ is \mathbb{R} -linear because it is given by precomposition with $[\bullet]_p$ (so pointwise addition and scalar multiplication are obviously preserved). Therefore, it remains to show that Φ is an isomorphism. To this end, define the map

$$\Psi \colon T_p M \to \mathcal{D}_p M$$
$$v \mapsto \left([f]_p \in C_p^{\infty}(M) \mapsto \Psi(v) \left([f]_p \right) \coloneqq v(\widetilde{f}) \in \mathbb{R} \right)$$

where for $[f]_p \in C_p^{\infty}(M)$ we denote by $\tilde{f} \in C^{\infty}(M)$ some smooth function defined on all of M such that $[f]_p = [\tilde{f}]_p$, which exists due to the *extension lemma*. Note that the value $v(\tilde{f})$ is well-defined for $[f]_p$ thanks to *Proposition 3.8*. Moreover, one readily checks that $\Psi(v)$ is indeed a derivation of $C_p^{\infty}(M)$. Now, let us show that Φ and Ψ are mutually inverse. Indeed, given $v \in T_pM$ and $f \in C^{\infty}(M)$, we have

$$\left(\Phi \circ \Psi(v)\right)(f) = \Psi(v)\left([f]_p\right) = v(\widetilde{f}) = v(f),$$

and thus $\Phi \circ \Psi = \mathrm{Id}$; conversely, given $v \in \mathcal{D}_p M$ and $[f]_p \in C_p^{\infty}(M)$, we have

$$(\Psi \circ \Phi(v))([f]_p) = \Phi(v)(\widetilde{f}) = v[\widetilde{f}]_p = v[f]_p,$$

and hence $\Psi \circ \Phi = \text{Id.}$ In conclusion, Φ is an isomorphism with inverse Ψ .

Exercise 5: Prove the following assertions:

- (a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold. If $p \in M$, then for any $v \in T_p M$ there exists a smooth curve $\gamma: (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.
- (b) The velocity of a composite curve: If $F: M \to N$ is a smooth map and if $\gamma: J \to M$ is a smooth curve, then for any $t_0 \in J$, the velocity at $t = t_0$ of the composite curve $F \circ \gamma: J \to N$ is given by

$$(F \circ \gamma)'(t_0) = dF(\gamma'(t_0)).$$

(c) Computing the differential using a velocity vector: If $F: M \to N$ is a smooth map, $p \in M$ and $v \in T_p M$, then

$$dF_p(v) = (F \circ \gamma)'(0)$$

for any smooth curve $\gamma: J \to M$ such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = v$.

Solution:

(a) Let (U, φ) be a smooth coordinate chart for M centered at p with components functions (x^1, \ldots, x^n) , and write $v = v^i \frac{\partial}{\partial x^i} \Big|_p$ in terms of the coordinate basis. For sufficiently small $\varepsilon > 0$, let $\gamma: (-\varepsilon, \varepsilon) \to U$ be the curve whose coordinate representation is

$$\gamma(t) = (tv^1, \dots, tv^n).$$

This is a smooth curve with $\gamma(0) = p$ and

$$\gamma'(0) = \frac{d\gamma^i}{dt}(0)\frac{\partial}{\partial x^i}\Big|_p = v^i\frac{\partial}{\partial x^i}\Big|_p = v.$$

(b) By definition and by *Exercise* 1(b) we obtain

$$(F \circ \gamma)'(t_0) = d(F \circ \gamma) \left(\frac{d}{dt} \Big|_{t_0} \right) = (dF \circ d\gamma) \left(\frac{d}{dt} \Big|_{t_0} \right)$$
$$= dF \left(d\gamma \left(\frac{d}{dt} \Big|_{t_0} \right) \right) = dF \left(\gamma'(t_0) \right).$$

(c) Follows immediately from (a) and (b).