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Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 4 — Solutions

Exercise 1: Let M, N and P be smooth manifolds, let F': M — N and G: N — P be
smooth maps, and let p € M. Prove the following assertions:

(a) The map dF,: T,M — Tp@)N is R-linear.

(b) d(G o F)p = dGF(p) o dei TpM — T(Gop)(p)P.

(c) d(Idnr)p = Idgpr: T,M — T,M.
)

(d) If F is a diffeomorphism, then dF},: T,M — Ty, N is an isomorphism, and it holds
that (de>_1 = d(F_l)F(p).
Solution:

(a) Let v,w € T,M and A\, u € R. For any f € C*(N), we have

A, (v + ) (f) = (Ao + ) (f o F)
— Ao(f o F) + puw(f o F)
— A, (v)(f) + pdFy(w)(f)
— (AE,(v) + pdFy(w)) (f),

which implies
dF,(Av + pw) = NdF,(v) + pdF,(w).

b) For any v € T,M and any f € C*(P), we have
P

d(GoF)p(U)(f) = U(fo (GOF)) = U((foG) oF)
= dF,(v)(f o G)
= dGr(p) (dF,(v)) (f)
= (dGr) o dF,) (v)(f),

and thus
A(G o F)y(v) = (AGrg) 0 dF) (v),
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which yields the assertion.

(c) For any v € T,M and any f € C*°(M), we have

d(Idu)p(v)(f) = v(f o Ida ) = v(f),
and hence
d(IdM)p(U) =V = IdTpM(U),
which proves the claim.

(d) Since F'is a diffeomorphism, we have
FoF'=Idy and F'oF =Idy,

so by (b) and (c) we obtain
Iz, = d(Idy), = d (FL o F) =d(F)

and

IdTF(:D)N = d(IdN)F(p) =d (F © F_l)F(p) =dFyod (F_1>

Hence, dF, is an R-linear isomorphism with inverse

(de)_l =d (F_l)F(p) :

Remark. For those familiar with categorical language, let us put Ezercise 1 into context.
Let Man?° be the category of pointed smooth manifolds, i.e., the category whose objects
are pairs (M,p), where M is a smooth manifold and p € M, and whose morphisms
F: (M,p) — (N,q) are smooth maps F': M — N with F'(p) = q. Also, denote by Vectg
the category of R-vector spaces. Parts (a), (b) and (c) of the above exercise show that the
assignment 7: Man® — Vectg, which to a pointed smooth manifold (M, p) assigns the
tangent space T'(M,p) = T,M and which to a smooth map F': (M,p) — (N, q) assigns
the differential T'(F') = dF), of F at p, is a covariant functor. It is a general fact that
functors send isomorphisms to isomorphisms, and that T(F~') = T(F)~!, which is why
part (d) of Ezercise 1 is a formal consequence of the previous parts.

Exercise 2: Let V be a finite-dimensional R-vector space with its standard smooth
manifold structure, see Ezercise 3, Sheet 2. Fix a point a € V.

(a) For each v € V define a map

D,| : C®(V) — R, f»—>i fla+tv).
¢ dt{,_g

Show that D, ,lsa derivation at a.

(b) Show that the map
V-1V, v— D, "

is a canonical isomorphism, such that for any linear map L: V — W the following
diagram commutes:



Solution:

(a) Choose a basis E,..., E, of V and let eq,...,e, be the standard basis of R™. Let
@: R®™ — V be the induced isomorphism, which is a diffeomorphism by definition of
the standard smooth structure. Let @ := ¢ !(a) and ¢ := ¢~ '(v). By Exercise 1, the
differential dygz is an isomorphism from 7T;R" to T,V. Now, as shown in the lecture, the
map

N d
Dg|.: C*(R") — R, f>—>£ f(@+ to)

t=0

is a derivation. Let us prove that dgpa(ﬁg|a) = Dv|a as functions from C*°(V) to R,

thereby proving that Dv|a is a derivation, as dpgz (ﬁ{;‘a) is so. To this end, let f € C*(V).
Then

~ N d p
d¢d<D5|a)(f>:Dﬁ’5(f090):— (fogp)({i_|_ﬁj):E

dt f(CL—FtU):Dv‘a(f)-

t=0

t=0

As f was arbitrary, we conclude that dnpa(ﬁg‘d) =D,
of C*(V) at a.

(b) Denote by 1, : V — T,V the map v — Dv‘a. In part (a) we proved that

,; in particular, D, }a is a derivation

—

dpg © N(rn ) (V) = Nvea) © ©(V)

for all @,7 € R". In other words, we have dpz o nwna = Nwe@) © ¢- In particular,
since in the lecture we already saw that ngn» z) is an isomorphism, and as dypz and ¢ are
isomorphisms as well, we conclude that 7v,,(s)) is an isomorphism.

It remains to check the above diagram commutes. Firstly, since L is linear, it is
in particular smooth (all first order partial derivatives with respect to some basis exist
and are constant, and all higher order partial derivatives vanish). Now, let v € V' and

f € C*(W) be arbitrary. We have

(dLa o n(V,a)(U)><f) = dLa(Dv|a)(f) = Dv‘a(f o L)
d d
== t:0f<L(a +tv)) = pr tzof(La +tlv) = DLv|La(f)
= Nw,La)(LV)(f) = (nwiza) © L(0)) (f)-
As v and f were arbitrary, we conclude that

dLq © N(v,a) = N(w,La) © L

in other words, the diagram in part (b) is commutative.

3



Remark. Again, for those familiar with categorical language, let us put Fzercise 2 into
context. The category Man;° of pointed smooth manifolds described in the previous
remark has the category Vectg . of pointed vector spaces (only with linear maps between
them, so not a full subcategory) as a subcategory. Therefore, the tangent space yields a
functor T": Vectgr . — Vecty by restricting to this subcategory. But there is also another
natural functor between these two categories, namely the forgetful functor U: Vectg , —
Vecty which to a pointed vector space (V, a) associates the underlying vector space V', and
to a linear map L: (V,a) — (W,b) (i.e., a linear map with La = b) associates the linear
map L: V — W. In the preceding exercise, we showed that 7, is a natural transformation
from U to T (by showing that the given diagram commutes), and in fact that it is a
natural isomorphism (by showing that each individual map nw,q): U(V,a) = T(V,a) is
an isomorphism).

Exercise 3: Let M, ..., My be smooth manifolds, where k > 2. For each j € {1,...,k},
let
e Ml XXMk—>MJ

be the projection onto the j-th factor M;. Show that for any point p = (p1,...,px) €
My x ... X My, the map

a: T,(My % ... x My) — T My & ... ® T, M,
U= (d(ﬂ-l)P(U)? s vd(ﬂ-wp(l)))

is an R-linear isomorphism.

Solution: The map « is linear; indeed, this follows readily from the fact that every
component d(m;), is linear. Note also that both vector spaces have dimension ) . dim M;,
so to prove that « is an isomorphism, it suffices to prove that it is surjective. We will
achieve this by constructing a right-inverse to a.

To this end, for each 1 < 7 < k, define the map

LjIMj—>M1><...><Mk
m] = (ph"'apj*hmj?ijrl?"'7pk:>~

By part (b) of Exercise 4, Sheet 3 we infer that ¢; is smooth, because 7 o ¢; is either
constant or the identity (so in particular smooth) for all 1 < j' < k, with ¢;(p;) = p, so

we obtain a map
d(Lj)ij ijMj — Tp(Ml X ... X Mk)

We now define the following map:

/82 TleIEB---@TpkMk:_)Tp<M1 X oo, XMk)
(Ul, ... ,Uk) — d(Ll)pl (’Ul) + ...+ d(ék)pk (’Uk)

and we will show that g is a right-inverse for .. To this end, let
(Ul, e 7’Uk;> - Tlel @ Ce @ ,_Z?pk]\fj€
Then

aoB(vr,..., ) =« (Z d(t5)p; (%’)) = Z a (d(15)p,(v))) - (%)
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Now, let 1 < 4,5 < k be arbitrary. Note that

d(mi)p (d(5)p; (v5)) = d(mi 0 1), (v;) = 3505, (%)

because if ¢ # j, then m; o ¢; is constant and thus has 0 differential by Lemma 3.5(a) (see
also Erercise 5, Sheet 5), and if i = j, then m; 0 1; = Idy;; and thus its differential is the
identity by Ezercise 1(c). Thus, by (x) and (#*) we obtain

(o B)(v1,...,v) = Z((Sljvl, oy Opjug) = (v, .., k),
J
and since (vq,...,v;) was arbitrary, we conclude that oo f = Id. It follows that « is
surjective, and hence an isomorphism, as explained above.

Exercise 4: Let M be a smooth manifold and let p be a point of M.

(a) Consider the set S of ordered pairs (U, f), where U is an open subset of M containing
pand f: U — R is a smooth function. Define on & the following relation:

(U, f) ~ (V,g) if f = g on some open neighborhood of p.

Show that ~ is an equivalence relation on §. The equivalence class of an ordered pair
(U, f) is denoted by [(U, f)] or simply by [f], and is called the germ of f at p.

(b) The set of all germs of smooth functions at p is denoted by Cp°(M). Show that
C(M) is an R-vector space and an associative R-algebra under the operations

(U, /)] = [(U, cf)], where ¢ € R,
(U O+ (V.9 =[(UNV, [ +9)],
(U NOIVog)l = [UNV, fg)].

(c) A derivation of C°(M) is an R-linear map v: C;°(M) — R satisfying the following
product rule:
vlfaly = F(p)olgly + 9(p)olflp-

The set of derivations of C;°(M) is denoted by D, M.

(i) Show that D,M is an R-vector space.
(ii) Show that the map

®: D,M — T,M, ®(v)(f) =|[f],
is an isomorphism.

Solution:
(a) Straightforward.

(b) Straightforward. Note that the zero element of the R-vector space (or the associative
and commutative R-algebra) C2°(M) is the class [(M, Q)], where

O.M-—=>R, 2—0
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is the constant function with value 0 on M, which is smooth by Ezercise 3, Sheet 3, and
the unit of the R-algebra C3°(M) is the class [(M, )], where

I: M =R, v+ 1

is the constant function with value 1 on M, which is smooth by Ezercise 3, Sheet 3.

(c) We first prove (i). Clearly, it suffices to show that D,M is a vector subspace of
the vector space of linear maps C3°(M) — R (the dual of C3;°(M)). In other words, if
A1, A2 € R and vy, v, € DM, we have to show that A\jv; + A\gvg satisfies the product rule.
To this end, let [f],, [g], € C;°(M) be arbitrary. Then

(Mo + )\2U2)([fg]p) = /\1U1([f9] ) + )‘2U2( fg]p)
= M (f(p)vilgly + 9(p)r[fl) + Ao (f(p)valgly + 9(p)val 1)
= f( )()\1’01 -+ )\21)2 ( ]p) + g /\11]1 + )\2U2)<[f] )

Hence, \jv; + Aovy € D, M.
We now prove (ii). First of all, the assertion that ®(v): C*°(M) — R is a derivation
follows from the fact that

[o]p: C%(M) — G5 (M)
fe 1l

is a homomorphism of R-algebras, and thus if v € D, M is a derivation of C;°(M), then
®(v) = v o e|, is a derivation of C*°(M). Furthermore, ® is R-linear because it is given
by precomposition with [e], (so pointwise addition and scalar multiplication are obviously
preserved). Therefore, it remains to show that ® is an isomorphism. To this end, define
the map

U: T,M — D,M
v (Il € C(M) = w()(1f]y) = o(]) € R)
where for [f], € C°(M) we denote by f € C>®(M) some smooth function defined on

all of M such that [f], = [ﬂp, which exists due to the extension lemma. Note that the

value v(f) is well-defined for [f], thanks to Proposition 3.8. Moreover, one readily checks
that W(v) is indeed a derivation of C5°(M). Now, let us show that ® and ¥ are mutually
inverse. Indeed, given v € T,M and f € C*(M), we have

(@0 () (f) =V(®)([f]p) = v(f) =v(f),
and thus ® o W = Id; conversely, given v € D,M and [f], € C;°(M), we have

(¥ o ®(v)) ([f],) = @()(f) = v[f], = v[flp:

and hence ¥ o & = Id. In conclusion, ® is an isomorphism with inverse W.



Exercise 5: Prove the following assertions:

(a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold.
If p € M, then for any v € T,M there exists a smooth curve v: (—¢,¢) — M such
that v(0) = p and 7/(0) = v.

(b) The velocity of a composite curve: If F': M — N is a smooth map and if v: J — M
is a smooth curve, then for any ¢ty € J, the velocity at t =t of the composite curve
Fo~:J— N is given by

(Fov)'(to) = dF (v (t))-

(¢) Computing the differential using a velocity vector: If F: M — N is a smooth map,
p € M and v € T,M, then
dFy(v) = (F 07)'(0)

for any smooth curve v: J — M such that 0 € J, v(0) = p and +/(0) = v.

Solution:

a) Let (U, ¢) be a smooth coordinate chart for M centered at p with components functions
®
(z',...,2"), and write v = v*-2 » in terms of the coordinate basis. For sufficiently small

Oz?
e >0, let v: (—&,e) = U be the curve whose coordinate representation is

v(t) = (o', ... to").
This is a smooth curve with v(0) = p and

oy 0

70) = Do) ] =)

{2
’ Ox

p

(b) By definition and by Ezercise 1(b) we obtain

(F 07)'(to) = d(F o) (%

=dF <d7 (%
0

(c) Follows immediately from (a) and (b).




