EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 4 - Solutions

Exercise 1: Let M, N and P be smooth manifolds, let $F: M \rightarrow N$ and $G: N \rightarrow P$ be smooth maps, and let $p \in M$. Prove the following assertions:
(a) The map $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is \mathbb{R}-linear.
(b) $d(G \circ F)_{p}=d G_{F(p)} \circ d F_{p}: T_{p} M \rightarrow T_{(G \circ F)(p)} P$.
(c) $d\left(\operatorname{Id}_{M}\right)_{p}=\operatorname{Id}_{T_{p} M}: T_{p} M \rightarrow T_{p} M$.
(d) If F is a diffeomorphism, then $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is an isomorphism, and it holds that $\left(d F_{p}\right)^{-1}=d\left(F^{-1}\right)_{F(p)}$.

Solution:

(a) Let $v, w \in T_{p} M$ and $\lambda, \mu \in \mathbb{R}$. For any $f \in C^{\infty}(N)$, we have

$$
\begin{aligned}
d F_{p}(\lambda v+\mu w)(f) & =(\lambda v+\mu w)(f \circ F) \\
& =\lambda v(f \circ F)+\mu w(f \circ F) \\
& =\lambda d F_{p}(v)(f)+\mu d F_{p}(w)(f) \\
& =\left(\lambda d F_{p}(v)+\mu d F_{p}(w)\right)(f),
\end{aligned}
$$

which implies

$$
d F_{p}(\lambda v+\mu w)=\lambda d F_{p}(v)+\mu d F_{p}(w) .
$$

(b) For any $v \in T_{p} M$ and any $f \in C^{\infty}(P)$, we have

$$
\begin{aligned}
d(G \circ F)_{p}(v)(f) & =v(f \circ(G \circ F))=v((f \circ G) \circ F) \\
& =d F_{p}(v)(f \circ G) \\
& =d G_{F(p)}\left(d F_{p}(v)\right)(f) \\
& =\left(d G_{F(p)} \circ d F_{p}\right)(v)(f),
\end{aligned}
$$

and thus

$$
d(G \circ F)_{p}(v)=\left(d G_{F(p)} \circ d F_{p}\right)(v),
$$

which yields the assertion.
(c) For any $v \in T_{p} M$ and any $f \in C^{\infty}(M)$, we have

$$
d\left(\operatorname{Id}_{M}\right)_{p}(v)(f)=v\left(f \circ \operatorname{Id}_{M}\right)=v(f)
$$

and hence

$$
d\left(\operatorname{Id}_{M}\right)_{p}(v)=v=\operatorname{Id}_{T_{p} M}(v),
$$

which proves the claim.
(d) Since F is a diffeomorphism, we have

$$
F \circ F^{-1}=\operatorname{Id}_{N} \quad \text { and } \quad F^{-1} \circ F=\operatorname{Id}_{M},
$$

so by (b) and (c) we obtain

$$
\operatorname{Id}_{T_{p} M}=d\left(\operatorname{Id}_{M}\right)_{p}=d\left(F^{-1} \circ F\right)_{p}=d\left(F^{-1}\right)_{F(p)} \circ d F_{p}
$$

and

$$
\mathrm{Id}_{T_{F(p)} N}=d\left(\mathrm{Id}_{N}\right)_{F(p)}=d\left(F \circ F^{-1}\right)_{F(p)}=d F_{p} \circ d\left(F^{-1}\right)_{F(p)} .
$$

Hence, $d F_{p}$ is an \mathbb{R}-linear isomorphism with inverse

$$
\left(d F_{p}\right)^{-1}=d\left(F^{-1}\right)_{F(p)} .
$$

Remark. For those familiar with categorical language, let us put Exercise 1 into context. Let $\operatorname{Man}_{*}^{\infty}$ be the category of pointed smooth manifolds, i.e., the category whose objects are pairs (M, p), where M is a smooth manifold and $p \in M$, and whose morphisms $F:(M, p) \rightarrow(N, q)$ are smooth maps $F: M \rightarrow N$ with $F(p)=q$. Also, denote by $\operatorname{Vect}_{\mathbb{R}}$ the category of \mathbb{R}-vector spaces. Parts (a), (b) and (c) of the above exercise show that the assignment $T: \mathbf{M a n}_{*}^{\infty} \rightarrow \mathbf{V e c t}_{\mathbb{R}}$, which to a pointed smooth manifold (M, p) assigns the tangent space $T(M, p)=T_{p} M$ and which to a smooth map $F:(M, p) \rightarrow(N, q)$ assigns the differential $T(F)=d F_{p}$ of F at p, is a covariant functor. It is a general fact that functors send isomorphisms to isomorphisms, and that $T\left(F^{-1}\right)=T(F)^{-1}$, which is why part (d) of Exercise 1 is a formal consequence of the previous parts.

Exercise 2: Let V be a finite-dimensional \mathbb{R}-vector space with its standard smooth manifold structure, see Exercise 3, Sheet 2. Fix a point $a \in V$.
(a) For each $v \in V$ define a map

$$
\left.D_{v}\right|_{a}: C^{\infty}(V) \longrightarrow \mathbb{R},\left.f \mapsto \frac{d}{d t}\right|_{t=0} f(a+t v)
$$

Show that $\left.D_{v}\right|_{a}$ is a derivation at a.
(b) Show that the map

$$
V \rightarrow T_{a} V,\left.v \mapsto D_{v}\right|_{a}
$$

is a canonical isomorphism, such that for any linear map $L: V \rightarrow W$ the following diagram commutes:

Solution:

(a) Choose a basis E_{1}, \ldots, E_{n} of V and let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n}. Let $\varphi: \mathbb{R}^{n} \rightarrow V$ be the induced isomorphism, which is a diffeomorphism by definition of the standard smooth structure. Let $\vec{a}:=\varphi^{-1}(a)$ and $\vec{v}:=\varphi^{-1}(v)$. By Exercise 1, the differential $d \varphi_{\vec{a}}$ is an isomorphism from $T_{\vec{a}} \mathbb{R}^{n}$ to $T_{a} V$. Now, as shown in the lecture, the map

$$
\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}: C^{\infty}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{R},\left.f \mapsto \frac{d}{d t}\right|_{t=0} f(\vec{a}+t \vec{v})
$$

is a derivation. Let us prove that $d \varphi_{\vec{a}}\left(\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}\right)=\left.D_{v}\right|_{a}$ as functions from $C^{\infty}(V)$ to \mathbb{R}, thereby proving that $\left.D_{v}\right|_{a}$ is a derivation, as $d \varphi_{\vec{a}}\left(\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}\right)$ is so. To this end, let $f \in C^{\infty}(V)$. Then

$$
d \varphi_{\vec{a}}\left(\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}\right)(f)=\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}(f \circ \varphi)=\left.\frac{d}{d t}\right|_{t=0}(f \circ \varphi)(\vec{a}+t \vec{v})=\left.\frac{d}{d t}\right|_{t=0} f(a+t v)=\left.D_{v}\right|_{a}(f) .
$$

As f was arbitrary, we conclude that $d \varphi_{\vec{a}}\left(\left.\widehat{D}_{\vec{v}}\right|_{\vec{a}}\right)=\left.D_{v}\right|_{a}$; in particular, $\left.D_{v}\right|_{a}$ is a derivation of $C^{\infty}(V)$ at a.
(b) Denote by $\eta_{(V, a)}: V \rightarrow T_{a} V$ the map $\left.v \mapsto D_{v}\right|_{a}$. In part (a) we proved that

$$
d \varphi_{\vec{a}} \circ \eta_{\left(\mathbb{R}^{n}, \vec{a}\right)}(\vec{v})=\eta_{(V, \varphi(\vec{a}))} \circ \varphi(\vec{v})
$$

for all $\vec{a}, \vec{v} \in \mathbb{R}^{n}$. In other words, we have $d \varphi_{\vec{a}} \circ \eta_{\left(\mathbb{R}^{n}, \vec{a}\right)}=\eta_{(V, \varphi(\vec{a}))} \circ \varphi$. In particular, since in the lecture we already saw that $\eta_{\left(\mathbb{R}^{n}, \vec{a}\right)}$ is an isomorphism, and as $d \varphi_{\vec{a}}$ and φ are isomorphisms as well, we conclude that $\eta_{(V, \varphi(\vec{a}))}$ is an isomorphism.

It remains to check the above diagram commutes. Firstly, since L is linear, it is in particular smooth (all first order partial derivatives with respect to some basis exist and are constant, and all higher order partial derivatives vanish). Now, let $v \in V$ and $f \in C^{\infty}(W)$ be arbitrary. We have

$$
\begin{aligned}
\left(d L_{a} \circ \eta_{(V, a)}(v)\right)(f) & =d L_{a}\left(\left.D_{v}\right|_{a}\right)(f)=\left.D_{v}\right|_{a}(f \circ L) \\
& =\left.\frac{d}{d t}\right|_{t=0} f(L(a+t v))=\left.\frac{d}{d t}\right|_{t=0} f(L a+t L v)=\left.D_{L v}\right|_{L a}(f) \\
& =\eta_{(W, L a)}(L v)(f)=\left(\eta_{(W, L a)} \circ L(v)\right)(f) .
\end{aligned}
$$

As v and f were arbitrary, we conclude that

$$
d L_{a} \circ \eta_{(V, a)}=\eta_{(W, L a)} \circ L ;
$$

in other words, the diagram in part (b) is commutative.

Remark. Again, for those familiar with categorical language, let us put Exercise 2 into context. The category $\operatorname{Man}_{*}^{\infty}$ of pointed smooth manifolds described in the previous remark has the category $\operatorname{Vect}_{\mathbb{R}, *}$ of pointed vector spaces (only with linear maps between them, so not a full subcategory) as a subcategory. Therefore, the tangent space yields a functor $T: \operatorname{Vect}_{\mathbb{R}, *} \rightarrow \operatorname{Vect}_{\mathbb{R}}$ by restricting to this subcategory. But there is also another natural functor between these two categories, namely the forgetful functor $U: \operatorname{Vect}_{\mathbb{R}, *} \rightarrow$ $\operatorname{Vect}_{\mathbb{R}}$ which to a pointed vector space (V, a) associates the underlying vector space V, and to a linear map $L:(V, a) \rightarrow(W, b)$ (i.e., a linear map with $L a=b$) associates the linear map $L: V \rightarrow W$. In the preceding exercise, we showed that η_{\bullet} is a natural transformation from U to T (by showing that the given diagram commutes), and in fact that it is a natural isomorphism (by showing that each individual map $\eta_{(V, a)}: U(V, a) \rightarrow T(V, a)$ is an isomorphism).

Exercise 3: Let M_{1}, \ldots, M_{k} be smooth manifolds, where $k \geq 2$. For each $j \in\{1, \ldots, k\}$, let

$$
\pi_{j}: M_{1} \times \ldots \times M_{k} \rightarrow M_{j}
$$

be the projection onto the j-th factor M_{j}. Show that for any point $p=\left(p_{1}, \ldots, p_{k}\right) \in$ $M_{1} \times \ldots \times M_{k}$, the map

$$
\begin{aligned}
\alpha: T_{p}\left(M_{1} \times \ldots \times M_{k}\right) & \longrightarrow T_{p_{1}} M_{1} \oplus \ldots \oplus T_{p_{k}} M_{k} \\
v & \mapsto\left(d\left(\pi_{1}\right)_{p}(v), \ldots, d\left(\pi_{k}\right)_{p}(v)\right)
\end{aligned}
$$

is an \mathbb{R}-linear isomorphism.
Solution: The map α is linear; indeed, this follows readily from the fact that every component $d\left(\pi_{j}\right)_{p}$ is linear. Note also that both vector spaces have dimension $\sum_{i} \operatorname{dim} M_{i}$, so to prove that α is an isomorphism, it suffices to prove that it is surjective. We will achieve this by constructing a right-inverse to α.

To this end, for each $1 \leq j \leq k$, define the map

$$
\begin{aligned}
& \iota_{j}: M_{j} \rightarrow M_{1} \times \ldots \times M_{k} \\
& m_{j} \mapsto\left(p_{1}, \ldots, p_{j-1}, m_{j}, p_{j+1}, \ldots, p_{k}\right) .
\end{aligned}
$$

By part (b) of Exercise 4, Sheet 3 we infer that ι_{j} is smooth, because $\pi_{j^{\prime}} \circ \iota_{j}$ is either constant or the identity (so in particular smooth) for all $1 \leq j^{\prime} \leq k$, with $\iota_{j}\left(p_{j}\right)=p$, so we obtain a map

$$
d\left(\iota_{j}\right)_{p_{j}}: T_{p_{j}} M_{j} \rightarrow T_{p}\left(M_{1} \times \ldots \times M_{k}\right) .
$$

We now define the following map:

$$
\begin{aligned}
\beta: T_{p_{1}} M_{1} \oplus \ldots \oplus T_{p_{k}} M_{k} & \rightarrow T_{p}\left(M_{1} \times \ldots \times M_{k}\right) \\
\left(v_{1}, \ldots, v_{k}\right) & \mapsto d\left(\iota_{1}\right)_{p_{1}}\left(v_{1}\right)+\ldots+d\left(\iota_{k}\right)_{p_{k}}\left(v_{k}\right) .
\end{aligned}
$$

and we will show that β is a right-inverse for α. To this end, let

$$
\left(v_{1}, \ldots, v_{k}\right) \in T_{p_{1}} M_{1} \oplus \ldots \oplus T_{p_{k}} M_{k} .
$$

Then

$$
\begin{equation*}
\alpha \circ \beta\left(v_{1}, \ldots, v_{k}\right)=\alpha\left(\sum_{j} d\left(\iota_{j}\right)_{p_{j}}\left(v_{j}\right)\right)=\sum_{j} \alpha\left(d\left(\iota_{j}\right)_{p_{j}}\left(v_{j}\right)\right) . \tag{*}
\end{equation*}
$$

Now, let $1 \leq i, j \leq k$ be arbitrary. Note that

$$
\begin{equation*}
d\left(\pi_{i}\right)_{p}\left(d\left(\iota_{j}\right)_{p_{j}}\left(v_{j}\right)\right)=d\left(\pi_{i} \circ \iota_{j}\right)_{p_{j}}\left(v_{j}\right)=\delta_{i j} v_{j}, \tag{**}
\end{equation*}
$$

because if $i \neq j$, then $\pi_{i} \circ \iota_{j}$ is constant and thus has 0 differential by Lemma 3.5(a) (see also Exercise 5, Sheet 5), and if $i=j$, then $\pi_{i} \circ \iota_{j}=\operatorname{Id}_{M_{j}}$ and thus its differential is the identity by Exercise 1(c). Thus, by ($*$) and ($* *$) we obtain

$$
(\alpha \circ \beta)\left(v_{1}, \ldots, v_{k}\right)=\sum_{j}\left(\delta_{1 j} v_{1}, \ldots, \delta_{k j} v_{k}\right)=\left(v_{1}, \ldots, v_{k}\right),
$$

and since $\left(v_{1}, \ldots, v_{k}\right)$ was arbitrary, we conclude that $\alpha \circ \beta=\mathrm{Id}$. It follows that α is surjective, and hence an isomorphism, as explained above.

Exercise 4: Let M be a smooth manifold and let p be a point of M.
(a) Consider the set \mathcal{S} of ordered pairs (U, f), where U is an open subset of M containing p and $f: U \rightarrow \mathbb{R}$ is a smooth function. Define on \mathcal{S} the following relation:

$$
(U, f) \sim(V, g) \quad \text { if } f \equiv g \text { on some open neighborhood of } p
$$

Show that \sim is an equivalence relation on \mathcal{S}. The equivalence class of an ordered pair (U, f) is denoted by $[(U, f)]$ or simply by $[f]_{p}$ and is called the germ of f at p.
(b) The set of all germs of smooth functions at p is denoted by $C_{p}^{\infty}(M)$. Show that $C_{p}^{\infty}(M)$ is an \mathbb{R}-vector space and an associative \mathbb{R}-algebra under the operations

$$
\begin{aligned}
c[(U, f)] & =[(U, c f)], \text { where } c \in \mathbb{R}, \\
{[(U, f)]+[(V, g)] } & =[(U \cap V, f+g)], \\
{[(U, f)][(V, g)] } & =[(U \cap V, f g)] .
\end{aligned}
$$

(c) A derivation of $C_{p}^{\infty}(M)$ is an \mathbb{R}-linear map $v: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ satisfying the following product rule:

$$
v[f g]_{p}=f(p) v[g]_{p}+g(p) v[f]_{p}
$$

The set of derivations of $C_{p}^{\infty}(M)$ is denoted by $\mathcal{D}_{p} M$.
(i) Show that $\mathcal{D}_{p} M$ is an \mathbb{R}-vector space.
(ii) Show that the map

$$
\Phi: \mathcal{D}_{p} M \rightarrow T_{p} M, \Phi(v)(f)=v[f]_{p}
$$

is an isomorphism.

Solution:

(a) Straightforward.
(b) Straightforward. Note that the zero element of the \mathbb{R}-vector space (or the associative and commutative \mathbb{R}-algebra) $C_{p}^{\infty}(M)$ is the class $[(M, \mathbb{O})]$, where

$$
\mathbb{O}: M \rightarrow \mathbb{R}, x \mapsto 0
$$

is the constant function with value 0 on M, which is smooth by Exercise 3, Sheet 3, and the unit of the \mathbb{R}-algebra $C_{p}^{\infty}(M)$ is the class $[(M, \mathbb{I})]$, where

$$
\mathbb{I}: M \rightarrow \mathbb{R}, x \mapsto 1
$$

is the constant function with value 1 on M, which is smooth by Exercise 3, Sheet 3 .
(c) We first prove (i). Clearly, it suffices to show that $\mathcal{D}_{p} M$ is a vector subspace of the vector space of linear maps $C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ (the dual of $C_{p}^{\infty}(M)$). In other words, if $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in \mathcal{D}_{p} M$, we have to show that $\lambda_{1} v_{1}+\lambda_{2} v_{2}$ satisfies the product rule. To this end, let $[f]_{p},[g]_{p} \in C_{p}^{\infty}(M)$ be arbitrary. Then

$$
\begin{aligned}
\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right)\left([f g]_{p}\right) & =\lambda_{1} v_{1}\left([f g]_{p}\right)+\lambda_{2} v_{2}\left([f g]_{p}\right) \\
& =\lambda_{1}\left(f(p) v_{1}[g]_{p}+g(p) v_{1}[f]_{p}\right)+\lambda_{2}\left(f(p) v_{2}[g]_{p}+g(p) v_{2}[f]_{p}\right) \\
& =f(p)\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right)\left([g]_{p}\right)+g(p)\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right)\left([f]_{p}\right) .
\end{aligned}
$$

Hence, $\lambda_{1} v_{1}+\lambda_{2} v_{2} \in \mathcal{D}_{p} M$.
We now prove (ii). First of all, the assertion that $\Phi(v): C^{\infty}(M) \rightarrow \mathbb{R}$ is a derivation follows from the fact that

$$
\begin{aligned}
{[\bullet]_{p}: C^{\infty}(M) } & \rightarrow C_{p}^{\infty}(M) \\
f & \mapsto[f]_{p}
\end{aligned}
$$

is a homomorphism of \mathbb{R}-algebras, and thus if $v \in \mathcal{D}_{p} M$ is a derivation of $C_{p}^{\infty}(M)$, then $\Phi(v)=v \circ[\bullet]_{p}$ is a derivation of $C^{\infty}(M)$. Furthermore, Φ is \mathbb{R}-linear because it is given by precomposition with $[\bullet]_{p}$ (so pointwise addition and scalar multiplication are obviously preserved). Therefore, it remains to show that Φ is an isomorphism. To this end, define the map

$$
\begin{aligned}
\Psi: T_{p} M & \rightarrow \mathcal{D}_{p} M \\
v & \mapsto\left([f]_{p} \in C_{p}^{\infty}(M) \mapsto \Psi(v)\left([f]_{p}\right):=v(\widetilde{f}) \in \mathbb{R}\right)
\end{aligned}
$$

where for $[f]_{p} \in C_{p}^{\infty}(M)$ we denote by $\tilde{f} \in C^{\infty}(M)$ some smooth function defined on all of M such that $[f]_{p}=\left[\widetilde{f}_{p}\right.$, which exists due to the extension lemma. Note that the value $v(\widetilde{f})$ is well-defined for $[f]_{p}$ thanks to Proposition 3.8. Moreover, one readily checks that $\Psi(v)$ is indeed a derivation of $C_{p}^{\infty}(M)$. Now, let us show that Φ and Ψ are mutually inverse. Indeed, given $v \in T_{p} M$ and $f \in C^{\infty}(M)$, we have

$$
(\Phi \circ \Psi(v))(f)=\Psi(v)\left([f]_{p}\right)=v(\widetilde{f})=v(f)
$$

and thus $\Phi \circ \Psi=\mathrm{Id}$; conversely, given $v \in \mathcal{D}_{p} M$ and $[f]_{p} \in C_{p}^{\infty}(M)$, we have

$$
(\Psi \circ \Phi(v))\left([f]_{p}\right)=\Phi(v)(\widetilde{f})=v[\widetilde{f}]_{p}=v[f]_{p}
$$

and hence $\Psi \circ \Phi=$ Id. In conclusion, Φ is an isomorphism with inverse Ψ.

Exercise 5: Prove the following assertions:
(a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold. If $p \in M$, then for any $v \in T_{p} M$ there exists a smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$.
(b) The velocity of a composite curve: If $F: M \rightarrow N$ is a smooth map and if $\gamma: J \rightarrow M$ is a smooth curve, then for any $t_{0} \in J$, the velocity at $t=t_{0}$ of the composite curve $F \circ \gamma: J \rightarrow N$ is given by

$$
(F \circ \gamma)^{\prime}\left(t_{0}\right)=d F\left(\gamma^{\prime}\left(t_{0}\right)\right)
$$

(c) Computing the differential using a velocity vector: If $F: M \rightarrow N$ is a smooth map, $p \in M$ and $v \in T_{p} M$, then

$$
d F_{p}(v)=(F \circ \gamma)^{\prime}(0)
$$

for any smooth curve $\gamma: J \rightarrow M$ such that $0 \in J, \gamma(0)=p$ and $\gamma^{\prime}(0)=v$.

Solution:

(a) Let (U, φ) be a smooth coordinate chart for M centered at p with components functions $\left(x^{1}, \ldots, x^{n}\right)$, and write $v=\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$ in terms of the coordinate basis. For sufficiently small $\varepsilon>0$, let $\gamma:(-\varepsilon, \varepsilon) \rightarrow U$ be the curve whose coordinate representation is

$$
\gamma(t)=\left(t v^{1}, \ldots, t v^{n}\right)
$$

This is a smooth curve with $\gamma(0)=p$ and

$$
\gamma^{\prime}(0)=\left.\frac{d \gamma^{i}}{d t}(0) \frac{\partial}{\partial x^{i}}\right|_{p}=\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}=v .
$$

(b) By definition and by Exercise 1(b) we obtain

$$
\begin{aligned}
(F \circ \gamma)^{\prime}\left(t_{0}\right) & =d(F \circ \gamma)\left(\left.\frac{d}{d t}\right|_{t_{0}}\right)=(d F \circ d \gamma)\left(\left.\frac{d}{d t}\right|_{t_{0}}\right) \\
& =d F\left(d \gamma\left(\left.\frac{d}{d t}\right|_{t_{0}}\right)\right)=d F\left(\gamma^{\prime}\left(t_{0}\right)\right)
\end{aligned}
$$

(c) Follows immediately from (a) and (b).

