

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 6

Exercise 1:

- (a) Prove the following assertions:
 - (i) A composition of smooth submersions is a smooth submersion.
 - (ii) A composition of smooth immersions is a smooth immersion.
 - (iii) A composition of smooth embeddings is a smooth embedding.
- (b) Show by means of a counterexample that a composition of smooth maps of constant rank need not have constant rank.

Exercise 2 (to be submitted by Friday, 3.11.2023, 20:00):

- (a) Let M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$. Show that each of the projection maps $\pi_i \colon M_1 \times \ldots \times M_k \to M_i$ is a smooth submersion.
- (b) Let M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$. Choosing arbitrarily points $p_1 \in M_1, \ldots, p_k \in M_k$, for each $1 \le j \le k$ consider the map

$$\iota_j \colon M_j \to M_1 \times \ldots \times M_k, \ x \mapsto (p_1, \ldots, p_{j-1}, x, p_{j+1}, \ldots, p_k).$$

Show that each ι_j is a smooth embedding.

- (c) Examine whether the following plane curves are smooth immersions:
 - (i) $\alpha \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto (t^3, t^2).$
 - (ii) $\beta \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto (t^3 4t, t^2 4).$

If so, then examine also whether they are smooth embeddings.

(d) Show that the map

 $G: \mathbb{R}^2 \to \mathbb{R}^3, (u, v) \mapsto ((2 + \cos 2\pi u) \cos 2\pi v, (2 + \cos 2\pi u) \sin 2\pi v, \sin 2\pi u)$

is a smooth immersion.

Exercise 3 (Inverse function theorem for manifolds):

Let $F: M \to N$ be a smooth map. Show that if $p \in M$ is a point such that the differential dF_p of F at p is invertible, then there exist connected neighborhoods U_0 of p in M and V_0 of F(p) in N such that $F|_{U_0}: U_0 \to V_0$ is a diffeomorphism.

[Hint: Reduce to the ordinary inverse function theorem for functions between Euclidean spaces.]

Definition:

- (a) Let X and Y be topological spaces. A map $F: X \to Y$ is called a *local homeomorphism* if every point $p \in X$ has an open neighborhood U such that F(U) is open in Y and $F|_U: U \to F(U)$ is a homeomorphism.
- (b) Let M and N be smooth manifolds. A map $F: M \to N$ is called a *local diffeomorphism* if every point $p \in M$ has an open neighborhood U such that F(U) is open in N and $F|_U: U \to F(U)$ is a diffeomorphism.

Exercise 4 (*Elementary properties of local diffeomorphisms*): Prove the following assertions:

- (a) Every composition of local diffeomorphisms is a local diffeomorphism.
- (b) Every finite product of local diffeomorphisms between smooth manifolds is a local diffeomorphism.
- (c) Every local diffeomorphism is a local homeomorphism and an open map.
- (d) The restriction of a local diffeomorphism to an open submanifold is a local diffeomorphism.
- (e) Every diffeomorphism is a local diffeomorphism.
- (f) Every bijective local diffeomorphism is a diffeomorphism.
- (g) A map between smooth manifolds is a local diffeomorphism if and only if in a neighborhood of each point of its domain, it has a coordinate representation that is a local diffeomorphism.

Exercise 5:

Let M and N be smooth manifolds and let $F: M \to N$ be a map. Prove the following assertions:

- (a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth submersion.
- (b) If $\dim M = \dim N$ and if F is either a smooth immersion or a smooth submersion, then it is a local diffeomorphism.

Exercise 6:

Let M, N and P be smooth manifolds, and let $F: M \to N$ be a local diffeomorphism. Prove the following assertions:

- (a) If $G: P \to M$ is continuous, then G is smooth if and only if $F \circ G$ is smooth.
- (b) If F is surjective and if $H \colon N \to P$ is any map, then H is smooth if and only if $H \circ F$ is smooth.