Foundations of Data Science
Gastpar \& Urbanke

Problem Set 2 (Graded) - Due Tuesday, October 10, before class starts

For the Exercise Sessions on September 26 and Oct 3

Last name	First name	SCIPER Nr	Points

Problem 1: Axiomatic definition of entropy

Let $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be such that $p_{i} \geq 0$ for $i=1, \ldots, m$ and $\sum_{i} p_{i}=1$. Let

$$
\begin{equation*}
H\left(p_{1}, \ldots, p_{m}\right)=-\sum_{i} p_{i} \log p_{i} \tag{1}
\end{equation*}
$$

be the entropy of $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$.
(a) (Grouping property) Prove that

$$
H\left(p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right)=H\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) .
$$

The above property models the fact that the uncertainty in choosing among m objects should be equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.
(b) Prove that if a function F of probability vectors $\left(p_{1}, p_{2}, \ldots, p_{m}\right), m \geq 2$, is such that

1. $F\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is continuous in the p_{i} 's,
2. $F\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ satisfies the grouping property (a),
3. $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)=\log m$,
then F must be equal to the entropy (1).
Hint: Suppose that the $p_{i}^{\prime} s$ are rational, i.e., $p_{i}=\frac{m_{i}}{m}$ for some positive integers $\left\{m_{i}\right\}_{i=1, \ldots, k}$. Show using (a) recursively that

$$
F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)=F\left(\frac{m_{1}}{m}, \ldots, \frac{m_{k}}{m}\right)+\sum_{i} \frac{m_{i}}{m} F\left(\frac{1}{m_{i}}, \ldots, \frac{1}{m_{i}}\right) .
$$

Solution 1. (a) Using (1), we can rewrite the right-hand side as

$$
\begin{aligned}
& H\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) \\
& \quad=-\left(p_{1}+p_{2}\right) \log \left(p_{1}+p_{2}\right)-\sum_{i=3}^{m} p_{i} \log p_{i}+\left(p_{1}+p_{2}\right)\left(-\frac{p_{1}}{p_{1}+p_{2}} \log \frac{p_{1}}{p_{1}+p_{2}}-\frac{p_{2}}{p_{1}+p_{2}} \log \frac{p_{2}}{p_{1}+p_{2}}\right) \\
& =-\left(p_{1}+p_{2}\right) \log \left(p_{1}+p_{2}\right)-\sum_{i=3}^{m} p_{i} \log p_{i}-p_{1} \log p_{1}-p_{2} \log p_{2}+\left(p_{1}+p_{2}\right) \log \left(p_{1}+p_{2}\right) \\
& = \\
& =-\sum_{i=1}^{m} p_{i} \log p_{i}=H\left(p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right)
\end{aligned}
$$

(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of elements. Hence, using it recursively on $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$, we get

$$
F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)=F\left(\frac{m_{1}}{m}, \ldots, \frac{m_{k}}{m}\right)+\sum_{i} \frac{m_{i}}{m} F\left(\frac{1}{m_{i}}, \ldots, \frac{1}{m_{i}}\right) .
$$

Using property 3 on $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$ and on each $F\left(\frac{1}{m_{i}}, \ldots, \frac{1}{m_{i}}\right)$, we get

$$
\log m=F\left(\frac{m_{1}}{m}, \ldots, \frac{m_{k}}{m}\right)+\sum_{i} \frac{m_{i}}{m} \log m_{i}
$$

Rearranging the last equation gives

$$
F\left(\frac{m_{1}}{m}, \ldots, \frac{m_{k}}{m}\right)=-\sum_{i} \frac{m_{i}}{m} \log \frac{m_{i}}{m}
$$

This proves the result for every rational probability vector. By using the continuity of F (property 1), we can extend the result to any probability vector.

Problem 2: Entropy and Geometry

Suppose X, Y and Z are random variables.
(a) Show that $H(X)+H(Y)+H(Z) \geq \frac{1}{2}[H(X, Y)+H(Y, Z)+H(Z, X)]$.
(b) Show that $H(X, Y)+H(Y, Z) \geq H(X, Y, Z)+H(Y)$.
(c) Show that

$$
2[H(X, Y)+H(Y, Z)+H(Z, X)] \geq 3 H(X, Y, Z)+H(X)+H(Y)+H(Z)
$$

(d) Show that $H(X, Y)+H(Y, Z)+H(Z, X) \geq 2 H(X, Y, Z)$.
(e) Suppose n points in three dimensions are arranged so that their their projections to the $x y, y z$ and $z x$ planes give $n_{x y}, n_{y z}$ and $n_{z x}$ points. Clearly $n_{x y} \leq n, n_{y z} \leq n, n_{z x} \leq n$. Use part (d) show that

$$
n_{x y} n_{y z} n_{z x} \geq n^{2}
$$

Solution 2. (a) By the sub-addivitity of Entropy we know that

$$
\begin{aligned}
H(X, Y) & \leq H(X)+H(Y) \\
H(Y, Z) & \leq H(Y)+H(Z) \\
H(X, Z) & \leq H(X)+H(Z)
\end{aligned}
$$

Adding the three inequalities together we retrieve:

$$
H(X)+H(Y)+H(Z) \geq \frac{1}{2}(H(X, Y)+H(Y, Z)+H(Z, X))
$$

(b) It is easier to show

$$
H(X, Y)+H(Y, Z)-(H(X, Y, Z)+H(Y)) \geq 0
$$

Indeed we have that:

$$
H(X \mid Y)-H(X \mid Y, Z)=I(X ; Z \mid Y) \geq 0
$$

(c) Applying (b), but inverting the roles of X, Y, Z we get:

$$
\begin{aligned}
H(X, Y)+H(Y, Z) & \geq H(X, Y, Z)+H(Y) \\
H(Y, Z)+H(Z, X) & \geq H(Y, Z, X)+H(Z) \\
H(Y, X)+H(X, Z) & \geq H(Y, X, Z)+H(X)
\end{aligned}
$$

Adding the three inequalities together gives us (c).
(d) By sub-addivity again, we have that:

$$
\begin{equation*}
H(X, Y, Z) \leq H(X)+H(Y)+H(Z) \tag{2}
\end{equation*}
$$

Using (2) in (c) we retrieve

$$
\begin{aligned}
2[H(X, Y)+H(Y, Z)+H(X, Z)] & \geq 3 H(X, Y, Z)+H(X)+H(Y)+H(Z) \\
& \geq 3 H(X, Y, Z)+H(X, Y, Z) \\
& =4 H(X, Y, Z)
\end{aligned}
$$

(d) Let $\left\{\left(x_{i}, y_{i}, z_{i}\right): i=1, \ldots, n\right\}$ be our set of points. Suppose that X, Y, Z are random variables representing the components of the n points with respect to the x, y, z axes. Furthemore, suppose that three random variables are such that $\operatorname{Pr}\left((X, Y, Z)=\left(x_{i}, y_{i}, z_{i}\right)\right)=1 / n$ for every $1 \leq i \leq n$. This implies that

$$
\begin{equation*}
H(X, Y, Z)=\log n \tag{3}
\end{equation*}
$$

Consequently the random couples $(X, Y),(X, Z),(Y, Z)$ represent the projections of the points respectively, on the $x y, x z$ and $y z$ axes. We can thus say that

$$
\begin{align*}
H(X, Y) & \leq \log n_{x y} \tag{4}\\
H(X, Z) & \leq \log n_{x z} \tag{5}\\
H(Y, Z) & \leq \log n_{y z} \tag{6}
\end{align*}
$$

Using (3),(4),(5),(6) in (d) we retrieve the following:

$$
\left.\log \left(n_{x y} n_{x z} n_{y z}\right) \geq H(X, Y)+H(Y, Z)+H(X, Z)\right] \geq 2 H(X, Y, Z)=2 \log n
$$

Which is equivalent to:

$$
\left(n_{x y} n_{x z} n_{y z}\right) \geq n^{2} .
$$

Problem 3: Conditional KL divergence

We saw in class that a probability kernel $P_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ is a matrix $P_{Y \mid X}=P_{Y \mid X}(y \mid x): x \in \mathcal{X}, y \in \mathcal{Y}$ such that $P_{Y \mid X}(y \mid x) \geq 0$, and for each $x \in \mathcal{X}, \sum_{y} P_{Y \mid X}(y \mid x)=1$. Let $P_{X} \in \Pi(\mathcal{X})$ be a probability distribution on \mathcal{X}. We define the conditional $K L$ divergence between two probability kernels $P_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ and $Q_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ given P_{X} to be

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) D\left(P_{Y \mid X}(\cdot \mid x) \| Q_{Y \mid X}(\cdot \mid x)\right)
$$

where for every $x, D\left(P_{Y \mid X}(\cdot \mid x) \| Q_{Y \mid X}(\cdot \mid x)\right)$ is the standard KL divergence between the two distributions $P_{Y \mid X}(\cdot \mid x)$ and $Q_{Y \mid X}(\cdot \mid x)$ over \mathcal{Y}.
(a) (Chain rule of the KL divergence) Show that

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

where $P_{X, Y}$ and $Q_{X, Y}$ are two joint distributions on $\mathcal{X} \times \mathcal{Y}$ such that $P_{X, Y}(x, y)=P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{X, Y}(x, y)=Q_{X}(x) Q_{Y \mid X}(y \mid x)$.
(b) Using (a), show that

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=D\left(P_{X, Y} \| Q_{X, Y}\right)
$$

where $P_{X, Y}(x, y)=P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{X, Y}(x, y)=P_{X}(x) Q_{Y \mid X}(y \mid x)$.
(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class, show that

$$
D\left(P_{Y} \| Q_{Y}\right) \leq D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

where $P_{Y}(y)=\sum_{x \in \mathcal{X}} P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{Y}(y)=\sum_{x \in \mathcal{X}} P_{X}(x) Q_{Y \mid X}(y \mid x)$.

Solution 3. (a)

$$
\begin{aligned}
D\left(P_{X Y} \| Q_{X Y}\right) & =\sum_{x, y} P_{X Y}(x, y) \log \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)} \\
& =\sum_{x, y} P_{X}(x) P_{Y \mid X}(y \mid x) \log \frac{P_{X}(x) P_{Y \mid X}(y \mid x)}{Q_{X}(x) Q_{Y \mid X}(y \mid x)} \\
& =\sum_{x, y} P_{X}(x) P_{Y \mid X}(y \mid x) \log \frac{P_{X}(x)}{Q_{X}(x)}+\sum_{x, y} P_{X}(x) P_{Y \mid X}(y \mid x) \log \frac{P_{Y \mid X}(y \mid x)}{Q_{Y \mid X}(y \mid x)} \\
& =D\left(P_{X} \| Q_{X}\right)+\sum_{x} P_{X}(x) D\left(P_{Y \mid X}(\cdot \mid x) \| Q_{Y \mid X}(\cdot \mid x)\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right) .
\end{aligned}
$$

(b)

$$
D\left(P_{X Y} \| Q_{X Y}\right)=D\left(P_{X} \| P_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

(c) Define the kernel

$$
W(\tilde{y} \mid x, y)= \begin{cases}1, & \text { if } \tilde{y}=y \\ 0, & \text { otherwise }\end{cases}
$$

Then we have $P_{\tilde{Y}}(\tilde{y})=\sum_{x, y} P_{X Y}(x, y) W(\tilde{y} \mid x, y)=P_{Y}(\tilde{y})$ and $Q_{\tilde{Y}}(\tilde{y})=\sum_{x, y} Q_{X Y}(x, y) W(\tilde{y} \mid x, y)=$ $Q_{Y}(\tilde{y})$. Hence, by the DPI we have

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=D\left(P_{X Y} \| Q_{X Y}\right) \geq D\left(P_{\tilde{Y}} \| Q_{\tilde{Y}}\right)=D\left(P_{Y} \| Q_{Y}\right)
$$

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets \mathcal{X} and \mathcal{Y} with joint probability distribution $P_{X Y}$, and let $I(X ; Y)$ be their mutual information.
(a) Show that for every function $f(X, Y)$ such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite,

$$
I(X ; Y) \geq \mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right]
$$

(b) Show that there is a function $\tilde{f}(X, Y)$ such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite and

$$
I(X ; Y)=\mathbb{E}_{P_{X Y}}[\tilde{f}(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{\tilde{f}(X, Y)}\right]\right]
$$

(c) Conclude that

$$
I(X ; Y)=\sup _{f} \mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right]
$$

where the sup is over all functions f such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite.

Solution 4. (a)

$$
\begin{aligned}
\mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right] & =\mathbb{E}_{P_{Y}}\left[\mathbb{E}_{P_{X \mid Y}}[f(X, Y)]-\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right] \\
& \leq \mathbb{E}_{P_{Y}}\left[D\left(P_{X \mid Y} \| P_{X}\right)\right]=I(X ; Y)
\end{aligned}
$$

where the inequality is due to the Donsker-Varadhan form of the KL divergence seen in class.
(b) Pick $f(x, y)=\log \frac{P_{X Y}(x, y)}{P_{X}(x) P_{Y}(y)}$. For this choice of $f, E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite and simple substitution shows that $E_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right]=I(X ; Y)$.
(c) By (a) we know that $\sup _{f} \mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right]$ is a lower bound on $I(X ; Y)$. By (b) we know that the bound can be achieved with $f(x, y)=\log \frac{P_{X Y}(x, y)}{P_{X}(x) P_{Y}(y)}$. This proves that the bound is actually an equality.

Problem 5: f-divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1)=0$. Define the f-divergence of a distribution P from a distribution Q as

$$
D_{f}(P \| Q) \triangleq \sum_{x} Q(x) f(P(x) / Q(x))
$$

In the sum above we take $f(0):=\lim _{t \rightarrow 0} f(t), 0 f(0 / 0):=0$, and $0 f(a / 0):=\lim _{t \rightarrow 0} t f(a / t)=$ $a \lim _{t \rightarrow 0} t f(1 / t)$.
(a) Show that the following basic properties hold:

1. $D_{f_{1}+f_{2}}(P \| Q)=D_{f_{1}}(P \| Q)+D_{f_{2}}(P \| Q)$
2. $D_{f}(P \| P)=0$
3. $D_{f}(P \| Q) \geq 0$
(b) (Monotonicity) Show that $D_{f}\left(P_{X Y} \| Q_{X Y}\right) \geq D_{f}\left(P_{X} \| Q_{X}\right)$.
(c) (Data processing inequality) Show that for any probability kernel $W(y \mid x)$ from \mathcal{X} to \mathcal{Y}, and any two distributions P_{X} and Q_{X} on \mathcal{X}

$$
D_{f}\left(P_{X} \| Q_{X}\right) \geq D_{f}\left(P_{Y} \| Q_{Y}\right)
$$

where P_{Y} and Q_{Y} are probability distributions on \mathcal{Y} given by $P_{Y}(y)=\sum_{x} P_{X}(x) W(y \mid x)$ and $Q_{Y}(y)=\sum_{x} Q_{X}(x) W(y \mid x)$.
(d) Show that if f is strictly convex in 1 , then $D_{f}(P \| Q)=0$ if and only if $P=Q$.

Solution 5. (a)
1.

$$
\begin{aligned}
D_{f_{1}+f_{2}}(P \| Q) & =\sum_{x} Q(x)\left[f_{1}(P(x) / Q(x))+f_{2}(P(x) / Q(x))\right] \\
& =\sum_{x} Q(x) f_{1}(P(x) / Q(x))+\sum_{x} Q(x) f_{2}(P(x) / Q(x)) \\
& =D_{f_{1}}(P \| Q)+D_{f_{2}}(P \| Q)
\end{aligned}
$$

2. $D_{f}(P \| P)=\sum_{x} P(x) f(P(x) / P(x))=\sum_{x} P(x) f(1)=0$.
3. $D_{f}(P \| Q)=\sum_{x} Q(x) f(P(x) / Q(x)) \geq f\left(\sum_{x} Q(x) \frac{P(x)}{Q(x)}\right)=f\left(\sum_{x} P(x)\right)=f(1)=0$ where we used Jensen's inequality since f is convex.
(b)

$$
\begin{aligned}
D_{f}\left(P_{X Y} \| Q_{X Y}\right) & =\sum_{x, y} Q_{X Y}(x, y) f\left(\frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}\right) \\
& =\sum_{x} Q_{X}(x) \sum_{y} Q_{Y \mid X}(y \mid x) f\left(\frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}\right) \\
& \geq \sum_{x} Q_{X}(x) f\left(\sum_{y} Q_{Y \mid X}(y \mid x) \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}\right) \\
& =\sum_{x} Q_{X}(x) f\left(\frac{\sum_{y} P_{X Y}(x, y)}{Q_{X}(x)}\right) \\
& =\sum_{x} Q_{X}(x) f\left(\frac{P_{X}(x)}{Q_{X}(x)}\right)=D_{f}(P \| Q)
\end{aligned}
$$

where the inequality is again due to Jensen.
(c) From (b) we have $D_{f}\left(P_{X Y} \| Q_{X Y}\right) \geq D_{f}\left(P_{Y} \| Q_{Y}\right)$. But we also have

$$
\begin{aligned}
D_{f}\left(P_{X Y} \| Q_{X Y}\right) & =\sum_{x, y} Q_{X}(x) W(y \mid x) f\left(\frac{P_{X}(x) W(y \mid x)}{Q_{X}(x) W(y \mid x)}\right) \\
& =\sum_{x} Q_{X}(x)\left(\sum_{y} W(y \mid x)\right) f\left(\frac{P_{X}(x)}{Q_{X}(x)}\right) \\
& =D_{f}\left(P_{X} \| Q_{X}\right)
\end{aligned}
$$

that is, $D_{f}\left(P_{X} \| Q_{X}\right) \geq D_{f}\left(P_{Y} \| Q_{Y}\right)$.
(d) Since f is strictly convex in 1 , for every $s, t>0$ and $0<\alpha<1$ such that $\alpha s+(1-\alpha) t=1$, we have $\alpha f(s)+(1-\alpha) f(t)>f(1)=0$. Suppose by contradiction that $P \neq Q$ and $D_{f}(P \| Q)=0$. Then there exists \tilde{x} such that $P(\tilde{x}) \neq Q(\tilde{x})$. Define the random variable $Y=1_{\{X=\tilde{x}\}}$, and let $p \triangleq P(\tilde{x})$ and $q \triangleq Q(\tilde{x})$. Using (c) we get that $0 \leq D_{f}\left(P_{Y} \| Q_{Y}\right)=D_{f}(p \| q) \leq D_{f}(P \| Q)=0$, i.e., $D_{f}(p \| q)=$ $q f\left(\frac{p}{q}\right)+(1-q) f\left(\frac{1-p}{1-q}\right)=0$. But this contradicts the fact that f is strictly convex in 1 , since if you set $s=\frac{p}{q}, t=\frac{1-p}{1-q}$ and $\alpha=q$, the last equation can be rewritten as $\alpha f(s)+(1-\alpha) f(t)=0$, a contradiction.

Problem 6: Entropy and combinatorics

Let $n \geq 1$ and fix some $0 \leq k \leq n$. Let $p=\frac{k}{n}$ and let $T_{p}^{n} \subset\{0,1\}^{n}$ be the set of all binary sequences with exactly $n p$ ones.
(a) Show that

$$
\log \left|T_{p}^{n}\right|=n h(p)+O(\log n)
$$

where $h(p)=-p \log p-(1-p) \log (1-p)$ is the binary entropy function. Hint: Stirling's approximation states that for every $n \geq 1$,

$$
e^{\frac{1}{12 n+1}} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq e^{\frac{1}{12 n}} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

(b) Let $Q^{n}=\operatorname{Bernoulli}(q)^{n}$ be the i.i.d. Bernoulli distribution on $\{0,1\}^{n}$. Show that

$$
\log Q^{n}\left[T_{p}^{n}\right]=-n d(p \| q)+O(\log n)
$$

where $d(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}$ is the binary KL divergence.

Solution 6. (a) When $p=0$ or 1 , we have $\left|T_{p}^{n}\right|=1$, or equivalently $\log \left|T_{p}^{n}\right|=0$, so the result holds trivially, since $h(p)=0$ for $p=0,1$. For $p \neq 0,1$, we have that $\left|T_{p}^{n}\right|=\binom{n}{n p}=\frac{n!}{(n p)!(n(1-p))!}$. Using Stirling's approximation on the three factorials we get

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi n p(1-p)}} p^{-n p}(1-p)^{-n(1-p)} e^{\frac{1}{12 n+1}-\frac{1}{12 n p}-\frac{1}{12 n(1-p)}} & \leq\left|T_{p}^{n}\right| \\
& \leq \frac{1}{\sqrt{2 \pi n p(1-p)}} p^{-n p}(1-p)^{-n(1-p)} e^{\frac{1}{12 n}-\frac{1}{12 n p+1}-\frac{1}{12 n(1-p)+1}}
\end{aligned}
$$

By taking the \log on each side, we get

$$
\begin{aligned}
n h(p)-\frac{1}{2} \log (2 \pi n p(1-p))+\frac{1}{12 n+1}- & \frac{1}{12 n p}-\frac{1}{12 n(1-p)} \leq \log \left|T_{p}^{n}\right| \\
& \leq n h(p)-\frac{1}{2} \log (2 \pi n p(1-p))+\frac{1}{12 n}-\frac{1}{12 n p+1}-\frac{1}{12 n(1-p)+1}
\end{aligned}
$$

Since $\frac{1}{n} \leq p \leq \frac{n-1}{n}$ and the same holds for $1-p$, we can obtain the following (loose) bounds:

$$
\begin{gathered}
-\frac{1}{2} \log n+\frac{1}{2} \log (2 \pi) \leq \frac{1}{2} \log (2 \pi n p(1-p)) \leq \frac{1}{2} \log n+\frac{1}{2} \log (2 \pi) \\
\frac{1}{12 n+1}-\frac{1}{12 n p}-\frac{1}{12 n(1-p)} \geq-2 \\
\frac{1}{12 n}-\frac{1}{12 n p+1}-\frac{1}{12 n(1-p)+1} \leq 1
\end{gathered}
$$

so that we get

$$
n h(p)-\frac{1}{2} \log n-\frac{1}{2} \log (2 \pi)-2 \leq \log \left|T_{p}^{n}\right| \leq n h(p)+\frac{1}{2} \log n-\frac{1}{2} \log (2 \pi)+1
$$

i.e., $\log \left|T_{p}^{n}\right|=n h(p)+O(\log n)$.
(b) We have

$$
Q^{n}\left[T_{p}^{n}\right]=\binom{n}{n p} q^{n p}(1-q)^{n(1-p)}=\left|T_{p}^{n}\right| q^{n p}(1-q)^{n(1-p)}
$$

and therefore

$$
\begin{aligned}
\log Q^{n}\left[T_{p}^{n}\right] & =\log \left|T_{p}^{n}\right|+n p \log q+n(1-p) \log (1-q) \\
& =n h(p)+n p \log q+n(1-p) \log (1-q)+O(\log n) \\
& =-n d(p \| q)+O(\log n)
\end{aligned}
$$

where in the last step we used (a).

