Problem 1: Axiomatic definition of entropy

Let \((p_1, p_2, \ldots, p_m)\) be such that \(p_i \geq 0\) for \(i = 1, \ldots, m\) and \(\sum_i p_i = 1\). Let
\[H(p_1, \ldots, p_m) = -\sum_i p_i \log p_i\]
be the entropy of \((p_1, p_2, \ldots, p_m)\).

(a) (Grouping property) Prove that
\[H(p_1, p_2, p_3, \ldots, p_m) = H(p_1 + p_2, p_3, \ldots, p_m) + (p_1 + p_2)H \left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2} \right).\]

The above property models the fact that the uncertainty in choosing among \(m\) objects should be equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.

(b) Prove that if a function \(F\) of probability vectors \((p_1, p_2, \ldots, p_m)\), \(m \geq 2\), is such that
\[
\begin{align*}
1. & \quad F(p_1, p_2, \ldots, p_m) \text{ is continuous in the } p_i \text{'s}, \\
2. & \quad F(p_1, p_2, \ldots, p_m) \text{ satisfies the grouping property (a)}, \\
3. & \quad F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) = \log m,
\end{align*}
\]
then \(F\) must be equal to the entropy \(1\).

Hint: Suppose that the \(p_i's\) are rational, i.e., \(p_i = \frac{m_i}{m}\) for some positive integers \(\{m_i\}_{i=1}^{k}\). Show using (a) recursively that
\[F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) = F\left(\frac{m_1}{m}, \ldots, \frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} F\left(\frac{1}{m_i}, \ldots, \frac{1}{m_i}\right).\]

Solution 1. (a) Using (1), we can rewrite the right-hand side as
\[
\begin{align*}
H(p_1 + p_2, p_3, \ldots, p_m) &+ (p_1 + p_2)H \left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2} \right) \\
&= -(p_1 + p_2) \log(p_1 + p_2) - \sum_{i=3}^{m} p_i \log p_i + (p_1 + p_2) \left(-\frac{p_1}{p_1 + p_2} \log \frac{p_1}{p_1 + p_2} - \frac{p_2}{p_1 + p_2} \log \frac{p_2}{p_1 + p_2} \right) \\
&= -(p_1 + p_2) \log(p_1 + p_2) - \sum_{i=3}^{m} p_i \log p_i - p_1 \log p_1 - p_2 \log p_2 + (p_1 + p_2) \log(p_1 + p_2) \\
&= -\sum_{i=1}^{m} p_i \log p_i = H(p_1, p_2, p_3, \ldots, p_m).
\end{align*}
\]
(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of elements. Hence, using it recursively on $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$, we get

$$F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) = F\left(\frac{m_1}{m}, \ldots, \frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} F\left(\frac{1}{m_i}, \ldots, \frac{1}{m_i}\right).$$

Using property 3 on $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$ and on each $F\left(\frac{1}{m_i}, \ldots, \frac{1}{m_i}\right)$, we get

$$\log m = F\left(\frac{m_1}{m}, \ldots, \frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} \log m_i.$$

Rearranging the last equation gives

$$F\left(\frac{m_1}{m}, \ldots, \frac{m_k}{m}\right) = -\sum_i \frac{m_i}{m} \log \frac{m_i}{m}.$$

This proves the result for every rational probability vector. By using the continuity of F (property 1), we can extend the result to any probability vector.

Problem 2: Entropy and Geometry

Suppose X, Y, and Z are random variables.

(a) Show that $H(X) + H(Y) + H(Z) \geq \frac{1}{2} [H(X,Y) + H(Y,Z) + H(Z,X)].$

(b) Show that $H(X,Y) + H(Y,Z) \geq H(X,Y,Z) + H(Y).$

(c) Show that

(d) Show that $H(X,Y) + H(Y,Z) + H(Z,X) \geq 2H(X,Y,Z).$

(e) Suppose n points in three dimensions are arranged so that their their projections to the xy, yz and zx planes give n_{xy}, n_{yz} and n_{zx} points. Clearly $n_{xy} \leq n$, $n_{yz} \leq n$, $n_{zx} \leq n$. Use part (d) show that

$$n_{xy}n_{yz}n_{zx} \geq n^2.$$

Solution 2. (a) By the sub-additivity of Entropy we know that

$$H(X,Y) \leq H(X) + H(Y)$$

$$H(Y,Z) \leq H(Y) + H(Z)$$

$$H(X,Z) \leq H(X) + H(Z).$$

Adding the three inequalities together we retrieve:

$$H(X) + H(Y) + H(Z) \geq \frac{1}{2} (H(X,Y) + H(Y,Z) + H(Z,X)).$$

(b) It is easier to show

$$H(X,Y) + H(Y,Z) - (H(X,Y,Z) + H(Y)) \geq 0.$$

Indeed we have that:

$$H(X|Y) - H(X|Y,Z) = I(X;Z|Y) \geq 0.$$
(c) Applying (b), but inverting the roles of X, Y, Z we get:

\[
H(X, Y) + H(Y, Z) \geq H(X, Y, Z) + H(Y)
\]
\[
H(Y, Z) + H(Z, X) \geq H(Y, Z, X) + H(Z)
\]
\[
H(Y, X) + H(X, Z) \geq H(Y, X, Z) + H(X).
\]

Adding the three inequalities together gives us (c).

(d) By sub-additivity again, we have that:

\[
H(X, Y, Z) \leq H(X) + H(Y) + H(Z).
\]

Using (2) in (c) we retrieve

\[
2[H(X, Y) + H(Y, Z) + H(X, Z)] \geq 3H(X, Y, Z) + H(X) + H(Y) + H(Z)
\]

\[
\geq 3H(X, Y, Z) + H(X, Y, Z)
\]

\[
= 4H(X, Y, Z).
\]

(d) Let $\{(x_i, y_i, z_i) : i = 1, \ldots, n\}$ be our set of points. Suppose that X, Y, Z are random variables representing the components of the n points with respect to the x, y, z axes. Furthermore, suppose that three random variables are such that $\Pr((X, Y, Z) = (x_i, y_i, z_i)) = 1/n$ for every $1 \leq i \leq n$. This implies that

\[
H(X, Y, Z) = \log n.
\]

Consequently the random couples $(X, Y), (X, Z), (Y, Z)$ represent the projections of the points respectively, on the xy, xz and yz axes. We can thus say that

\[
H(X, Y) \leq \log n_{xy}
\]

\[
H(X, Z) \leq \log n_{xz}
\]

\[
H(Y, Z) \leq \log n_{yz}.
\]

Using (3), (4), (5), (6) in (d) we retrieve the following:

\[
\log (n_{xy}n_{xz}n_{yz}) \geq H(X, Y) + H(Y, Z) + H(X, Z) \geq 2H(X, Y, Z) = 2\log n.
\]

Which is equivalent to:

\[
(n_{xy}n_{xz}n_{yz}) \geq n^2.
\]

Problem 3: Conditional KL divergence

We saw in class that a probability kernel $P_{Y|X} : \mathcal{X} \rightarrow \mathcal{Y}$ is a matrix $P_{Y|X} = P_{Y|X}(y|x) : x \in \mathcal{X}, y \in \mathcal{Y}$ such that $P_{Y|X}(y|x) \geq 0$, and for each $x \in \mathcal{X}, \sum_y P_{Y|X}(y|x) = 1$. Let $P_X \in \Pi(\mathcal{X})$ be a probability distribution on \mathcal{X}. We define the **conditional KL divergence** between two probability kernels $P_{Y|X} : \mathcal{X} \rightarrow \mathcal{Y}$ and $Q_{Y|X} : \mathcal{X} \rightarrow \mathcal{Y}$ given P_X to be

\[
D(P_{Y|X}||Q_{Y|X}|P_X) \triangleq \sum_{x \in \mathcal{X}} P_X(x)D(P_{Y|X}(\cdot|x)||Q_{Y|X}(\cdot|x))
\]

where for every x, $D(P_{Y|X}(\cdot|x)||Q_{Y|X}(\cdot|x))$ is the standard KL divergence between the two distributions $P_{Y|X}(\cdot|x)$ and $Q_{Y|X}(\cdot|x)$ over \mathcal{Y}.

(a) **(Chain rule of the KL divergence)** Show that

\[
D(P_{X,Y}||Q_{X,Y}) = D(P_X||Q_X) + D(P_{Y|X}||Q_{Y|X}|P_X)
\]

where $P_{X,Y}$ and $Q_{X,Y}$ are two joint distributions on $\mathcal{X} \times \mathcal{Y}$ such that $P_{X,Y}(x, y) = P_X(x)P_{Y|X}(y|x)$ and $Q_{X,Y}(x, y) = Q_X(x)Q_{Y|X}(y|x)$.
(b) Using (a), show that
\[D(P_{Y|X} \| Q_{Y|X} | P_X) = D(P_{X,Y} \| Q_{X,Y}) \]
where \(P_{X,Y}(x, y) = P_X(x) P_{Y|X}(y|x) \) and \(Q_{X,Y}(x, y) = P_X(x) Q_{Y|X}(y|x) \).

(c) \textit{(Conditioning increases divergence)} Using (b) and the Data Processing Inequality seen in class, show that
\[D(P_Y \| Q_Y) \leq D(P_{Y|X} \| Q_{Y|X} | P_X) \]
where \(P_Y(y) = \sum_{x \in X} P_X(x) P_{Y|X}(y|x) \) and \(Q_Y(y) = \sum_{x \in X} P_X(x) Q_{Y|X}(y|x) \).

\textbf{Solution 3. (a)}

\[D(P_{XY} \| Q_{XY}) = \sum_{x,y} P_{XY}(x,y) \log \frac{P_{XY}(x,y)}{Q_{XY}(x,y)} \]
\[= \sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_X(x) P_{Y|X}(y|x)}{Q_X(x) Q_{Y|X}(y|x)} \]
\[= \sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_X(x)}{Q_X(x)} + \sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_{Y|X}(y|x)}{Q_{Y|X}(y|x)} \]
\[= D(P_X \| Q_X) + \sum_x P_X(x) D(P_{Y|X}(\cdot|x) \| Q_{Y|X}(\cdot|x)) = D(P_X \| Q_X) + D(P_{Y|X} \| Q_{Y|X} | P_X). \]

\textbf{(b)}

\[D(P_{XY} \| Q_{XY}) = D(P_X \| P_Y) + D(P_{Y|X} \| Q_{Y|X} | P_X) = D(P_{Y|X} \| Q_{Y|X} | P_X). \]

\textbf{(c)} Define the kernel
\[W(\hat{y}|x,y) = \begin{cases} 1, & \text{if } \hat{y} = y, \\ 0, & \text{otherwise}. \end{cases} \]

Then we have \(P_{Y}(\hat{y}) = \sum_{x,y} P_{XY}(x,y) W(\hat{y}|x,y) = P_{Y}(\hat{y}) \) and \(Q_{Y}(\hat{y}) = \sum_{x,y} Q_{XY}(x,y) W(\hat{y}|x,y) = Q_{Y}(\hat{y}) \). Hence, by the DPI we have
\[D(P_{Y|X} \| Q_{Y|X} | P_X) = D(P_{XY} \| Q_{XY}) \geq D(P_Y \| Q_Y) = D(P_Y \| Q_Y). \]

\textbf{Problem 4: Variational characterization of mutual information}

Let \(X \) and \(Y \) be two random variables over finite alphabets \(\mathcal{X} \) and \(\mathcal{Y} \) with joint probability distribution \(P_{XY} \), and let \(I(X;Y) \) be their mutual information.

(a) Show that for every function \(f(X,Y) \) such that \(E_{P_X P_Y}[e^{f(X,Y)}] \) is finite,
\[I(X;Y) \geq E_{P_X} [f(X,Y)] - E_{P_Y} [\log E_{P_X} [e^{f(X,Y)}]]. \]

(b) Show that there is a function \(\hat{f}(X,Y) \) such that \(E_{P_X P_Y}[e^{\hat{f}(X,Y)}] \) is finite and
\[I(X;Y) = E_{P_X} [\hat{f}(X,Y)] - E_{P_Y} [\log E_{P_X} [e^{\hat{f}(X,Y)}]]. \]

(c) Conclude that
\[I(X;Y) = \sup_f E_{P_X} [f(X,Y)] - E_{P_Y} [\log E_{P_X} [e^{f(X,Y)}]] \]
where the sup is over all functions \(f \) such that \(E_{P_X P_Y}[e^{f(X,Y)}] \) is finite.
Solution 4. (a)

\[\mathbb{E}_{P_{XY}}[f(X, Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X, Y)}]] = \mathbb{E}_{P_Y}[\mathbb{E}_{P_X}[f(X, Y)] - \log \mathbb{E}_{P_X}[e^{f(X, Y)}]] \leq \mathbb{E}_{P_Y}[D(P_X\|P_Y)] = I(X; Y) \]

where the inequality is due to the Donsker-Varadhan form of the KL divergence seen in class.

(b) Pick \(f(x, y) = \log \frac{P_{XY}(x, y)}{P_X(x)P_Y(y)} \). For this choice of \(f \), \(E_{P_XP_Y}[e^{f(X,Y)}] \) is finite and simple substitution shows that \(E_{P_XY}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]] = I(X; Y) \).

(c) By (a) we know that \(\sup_{f} E_{P_XY}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]] \) is a lower bound on \(I(X; Y) \). By (b) we know that the bound can be achieved with \(f(x, y) = \log \frac{P_{XY}(x, y)}{P_X(x)P_Y(y)} \). This proves that the bound is actually an equality.

Problem 5: \(f \)-divergences

Suppose \(f \) is a convex function defined on \((0, \infty)\) with \(f(1) = 0 \). Define the \(f \)-divergence of a distribution \(P \) from a distribution \(Q \) as

\[D_f(P\|Q) \triangleq \sum_x Q(x)f(P(x)/Q(x)) \]

In the sum above we take \(f(0) := \lim_{t \to 0} f(t) \), \(0f(0/0) := 0 \), and \(0f(a/0) := \lim_{t \to 0} tf(a/t) \).

(a) Show that the following basic properties hold:

1. \(D_{f_1 + f_2}(P\|Q) = D_{f_1}(P\|Q) + D_{f_2}(P\|Q) \)
2. \(D_f(P\|P) = 0 \)
3. \(D_f(P\|Q) \geq 0 \)

(b) \textit{(Monotonicity)} Show that \(D_f(P_{XY}\|Q_{XY}) \geq D_f(P_X\|Q_X) \).

(c) \textit{(Data processing inequality)} Show that for any probability kernel \(W(y|x) \) from \(X \) to \(Y \), and any two distributions \(P_X \) and \(Q_X \) on \(X \)

\[D_f(P_X\|Q_X) \geq D_f(P_Y\|Q_Y) \]

where \(P_Y \) and \(Q_Y \) are probability distributions on \(Y \) given by \(P_Y(y) = \sum_x P_X(x)W(y|x) \) and \(Q_Y(y) = \sum_x Q_X(x)W(y|x) \).

(d) Show that if \(f \) is strictly convex in 1, then \(D_f(P\|Q) = 0 \) if and only if \(P = Q \).

Solution 5. (a)

1. \[D_{f_1 + f_2}(P\|Q) = \sum_x Q(x)[f_1(P(x)/Q(x)) + f_2(P(x)/Q(x))] = \sum_x Q(x)f_1(P(x)/Q(x)) + \sum_x Q(x)f_2(P(x)/Q(x)) = D_{f_1}(P\|Q) + D_{f_2}(P\|Q) \]

2. \[D_f(P\|P) = \sum_x P(x)f(P(x)/P(x)) = \sum_x P(x)f(1) = 0 \]
3. \(D_f(P\|Q) = \sum_x Q(x)f(P(x)/Q(x)) \geq f(\sum_x Q(x)\frac{P(x)}{Q(x)}) = f(\sum_x P(x)) = f(1) = 0 \) where we used Jensen’s inequality since \(f \) is convex.

(b)
\[
D_f(P_{XY}\|Q_{XY}) = \sum_{x,y} Q_{XY}(x,y) f\left(\frac{P_{XY}(x,y)}{Q_{XY}(x,y)} \right) = \sum_x Q_X(x) \sum_y Q_{Y|X}(y|x) f\left(\frac{P_{XY}(x,y)}{Q_{XY}(x,y)} \right) \geq \sum_x Q_X(x) f\left(\sum_y Q_{Y|X}(y|x) \frac{P_{XY}(x,y)}{Q_{XY}(x,y)} \right) = \sum_x Q_X(x) f\left(\frac{P_X(x)}{Q_X(x)} \right) = D_f(P\|Q)
\]
where the inequality is again due to Jensen.

(c) From (b) we have \(D_f(P_{XY}\|Q_{XY}) \geq D_f(P_Y\|Q_Y) \). But we also have
\[
D_f(P_{XY}\|Q_{XY}) = \sum_{x,y} Q_X(x) W(y|x) f\left(\frac{P_X(x)W(y|x)}{Q_X(x)W(y|x)} \right) = \sum_x Q_X(x) \left(\sum_y W(y|x) f\left(\frac{P_X(x)}{Q_X(x)} \right) \right) = D_f(P\|Q)
\]
that is, \(D_f(P_X\|Q_X) \geq D_f(P_Y\|Q_Y) \).

(d) Since \(f \) is strictly convex in 1, for every \(s, t > 0 \) and \(0 < \alpha < 1 \) such that \(\alpha s + (1 - \alpha)t = 1 \), we have \(\alpha f(s) + (1 - \alpha)f(t) > f(1) = 0 \). Suppose by contradiction that \(P \neq Q \) and \(D_f(P\|Q) = 0 \). Then there exists \(\tilde{x} \) such that \(P(\tilde{x}) \neq Q(\tilde{x}) \). Define the random variable \(Y = 1_{\{X = \tilde{x}\}} \), and let \(p \triangleq P(\tilde{x}) \) and \(q \triangleq Q(\tilde{x}) \). Using (c) we get that \(0 \leq D_f(P_Y\|Q_Y) = D_f(p\|q) \leq D_f(P\|Q) = 0 \), i.e., \(D_f(p\|q) = qf\left(\frac{p}{q} \right) + (1 - q)f\left(\frac{1 - p}{1 - q} \right) = 0 \). But this contradicts the fact that \(f \) is strictly convex in 1, since if you set \(s = \frac{p}{q} \), \(t = \frac{1 - p}{1 - q} \) and \(\alpha = q \), the last equation can be rewritten as \(\alpha f(s) + (1 - \alpha)f(t) = 0 \), a contradiction.

Problem 6: Entropy and combinatorics

Let \(n \geq 1 \) and fix some \(0 \leq k \leq n \). Let \(p = \frac{k}{n} \) and let \(T^n_p \subset \{0,1\}^n \) be the set of all binary sequences with exactly \(np \) ones.

(a) Show that
\[
\log |T^n_p| = nh(p) + O(\log n)
\]
where \(h(p) = -p \log p - (1 - p) \log (1 - p) \) is the binary entropy function. Hint: Stirling’s approximation states that for every \(n \geq 1 \),
\[
\frac{1}{\sqrt{2\pi n}} \left(\frac{n}{e} \right)^n \leq n! \leq \frac{1}{\sqrt{2\pi n}} \left(\frac{n}{e} \right)^n
\]
(b) Let $Q^n = \text{Bernoulli}(q)^n$ be the i.i.d. Bernoulli distribution on $\{0,1\}^n$. Show that

$$ \log Q^n[T^n] = -n d(p\|q) + O(\log n) $$

where $d(p\|q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$ is the binary KL divergence.

Solution 6. (a) When $p = 0$ or 1, we have $|T^n_p| = 1$, or equivalently $\log |T^n_p| = 0$, so the result holds trivially, since $h(p) = 0$ for $p = 0, 1$. For $p \neq 0, 1$, we have that $|T^n_p| = \binom{n}{np} \leq \frac{e^n}{(np)^{np}(n(1-p))^{n(1-p)}}$. Using Stirling’s approximation on the three factorials we get

$$ \frac{1}{\sqrt{2\pi np(1-p)}} p^{-np} (1-p)^{-n(1-p)} e^{\frac{1}{12n} - \frac{1}{12np} - \frac{1}{12n(1-p)}} \leq |T^n_p| $$

By taking the log on each side, we get

$$ nh(p) - \frac{1}{2} \log(2\pi np(1-p)) + \frac{1}{12n} - \frac{1}{12np} - \frac{1}{12n(1-p)} \leq \log |T^n_p| $$

$$ \leq nh(p) - \frac{1}{2} \log(2\pi np(1-p)) + \frac{1}{12n} - \frac{1}{12np} + 1 - \frac{1}{12n(1-p) + 1}. $$

Since $\frac{1}{n} \leq p \leq \frac{n-1}{n}$ and the same holds for $1 - p$, we can obtain the following (loose) bounds:

$$ -\frac{1}{2} \log n + \frac{1}{2} \log(2\pi) \leq \frac{1}{2} \log(2\pi np(1-p)) \leq \frac{1}{2} \log n + \frac{1}{2} \log(2\pi) $$

$$ \frac{1}{12n} - \frac{1}{12np} - \frac{1}{12n(1-p)} \geq -2 $$

$$ \frac{1}{12n} - \frac{1}{12np} + 1 - \frac{1}{12n(1-p) + 1} \leq 1 $$

so that we get

$$ nh(p) - \frac{1}{2} \log n \leq \log |T^n_p| \leq nh(p) + \frac{1}{2} \log n - \frac{1}{2} \log(2\pi) + 1 $$

i.e., $\log |T^n_p| = nh(p) + O(\log n)$.

(b) We have

$$ Q^n[T^n] = \binom{n}{np} q^{np} (1-q)^{n(1-p)} = |T^n_p| q^{np} (1-q)^{n(1-p)} $$

and therefore

$$ \log Q^n[T^n] = \log |T^n_p| + np \log q + n(1-p) \log(1-q) $$

$$ = nh(p) + np \log q + n(1-p) \log(1-q) + O(\log n) $$

$$ = -nd(p\|q) + O(\log n) $$

where in the last step we used (a).