Problem Set 2 (Graded) — Due Tuesday, October 10, before class starts For the Exercise Sessions on September 26 and Oct 3

name S0	CIPER Nr	Points
	name S	name SCIPER Nr

Problem 1: Axiomatic definition of entropy

Let (p_1, p_2, \ldots, p_m) be such that $p_i \ge 0$ for $i = 1, \ldots, m$ and $\sum_i p_i = 1$. Let

$$H(p_1, \dots, p_m) = -\sum_i p_i \log p_i \tag{1}$$

be the entropy of (p_1, p_2, \ldots, p_m) .

(a) (Grouping property) Prove that

$$H(p_1, p_2, p_3, \dots, p_m) = H(p_1 + p_2, p_3, \dots, p_m) + (p_1 + p_2)H\left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}\right).$$

The above property models the fact that the uncertainty in choosing among m objects should be equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.

- (b) Prove that if a function F of probability vectors $(p_1, p_2, \ldots, p_m), m \ge 2$, is such that
 - 1. $F(p_1, p_2, \ldots, p_m)$ is continuous in the p_i 's,
 - 2. $F(p_1, p_2, \ldots, p_m)$ satisfies the grouping property (a),
 - 3. $F(\frac{1}{m},\ldots,\frac{1}{m}) = \log m$,

then F must be equal to the entropy (1).

Hint: Suppose that the p'_i s are rational, i.e., $p_i = \frac{m_i}{m}$ for some positive integers $\{m_i\}_{i=1,...,k}$. Show using (a) recursively that

$$F\left(\frac{1}{m},\ldots,\frac{1}{m}\right) = F\left(\frac{m_1}{m},\ldots,\frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} F\left(\frac{1}{m_i},\ldots,\frac{1}{m_i}\right).$$

Solution 1. (a) Using (1), we can rewrite the right-hand side as

$$H(p_1 + p_2, p_3, \dots, p_m) + (p_1 + p_2)H\left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}\right)$$

= $-(p_1 + p_2)\log(p_1 + p_2) - \sum_{i=3}^m p_i \log p_i + (p_1 + p_2)\left(-\frac{p_1}{p_1 + p_2}\log\frac{p_1}{p_1 + p_2} - \frac{p_2}{p_1 + p_2}\log\frac{p_2}{p_1 + p_2}\right)$
= $-(p_1 + p_2)\log(p_1 + p_2) - \sum_{i=3}^m p_i \log p_i - p_1 \log p_1 - p_2 \log p_2 + (p_1 + p_2)\log(p_1 + p_2)$
= $-\sum_{i=1}^m p_i \log p_i = H(p_1, p_2, p_3, \dots, p_m).$

(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of elements. Hence, using it recursively on $F\left(\frac{1}{m},\ldots,\frac{1}{m}\right)$, we get

$$F\left(\frac{1}{m},\ldots,\frac{1}{m}\right) = F\left(\frac{m_1}{m},\ldots,\frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} F\left(\frac{1}{m_i},\ldots,\frac{1}{m_i}\right)$$

Using property 3 on $F\left(\frac{1}{m},\ldots,\frac{1}{m}\right)$ and on each $F\left(\frac{1}{m_i},\ldots,\frac{1}{m_i}\right)$, we get

$$\log m = F\left(\frac{m_1}{m}, \dots, \frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} \log m_i.$$

Rearranging the last equation gives

$$F\left(\frac{m_1}{m},\ldots,\frac{m_k}{m}\right) = -\sum_i \frac{m_i}{m}\log\frac{m_i}{m}.$$

This proves the result for every rational probability vector. By using the continuity of F (property 1), we can extend the result to any probability vector.

Problem 2: Entropy and Geometry

Suppose X, Y and Z are random variables.

- (a) Show that $H(X) + H(Y) + H(Z) \ge \frac{1}{2} [H(X,Y) + H(Y,Z) + H(Z,X)].$
- (b) Show that $H(X, Y) + H(Y, Z) \ge H(X, Y, Z) + H(Y)$.
- (c) Show that

$$2[H(X,Y) + H(Y,Z) + H(Z,X)] \ge 3H(X,Y,Z) + H(X) + H(Y) + H(Z).$$

- (d) Show that $H(X, Y) + H(Y, Z) + H(Z, X) \ge 2H(X, Y, Z)$.
- (e) Suppose n points in three dimensions are arranged so that their their projections to the xy, yz and zx planes give n_{xy} , n_{yz} and n_{zx} points. Clearly $n_{xy} \le n$, $n_{yz} \le n$, $n_{zx} \le n$. Use part (d) show that

$$n_{xy}n_{yz}n_{zx} \ge n^2.$$

Solution 2. (a) By the sub-addivitity of Entropy we know that

$$H(X,Y) \le H(X) + H(Y)$$

$$H(Y,Z) \le H(Y) + H(Z)$$

$$H(X,Z) \le H(X) + H(Z).$$

Adding the three inequalities together we retrieve:

$$H(X) + H(Y) + H(Z) \ge \frac{1}{2} (H(X,Y) + H(Y,Z) + H(Z,X)).$$

(b) It is easier to show

$$H(X,Y) + H(Y,Z) - (H(X,Y,Z) + H(Y)) \ge 0.$$

Indeed we have that:

$$H(X|Y) - H(X|Y,Z) = I(X;Z|Y) \ge 0.$$

(c) Applying (b), but inverting the roles of X, Y, Z we get:

$$H(X,Y) + H(Y,Z) \ge H(X,Y,Z) + H(Y) H(Y,Z) + H(Z,X) \ge H(Y,Z,X) + H(Z) H(Y,X) + H(X,Z) \ge H(Y,X,Z) + H(X).$$

Adding the three inequalities together gives us (c). (d) By sub-addivity again, we have that:

$$H(X, Y, Z) \le H(X) + H(Y) + H(Z).$$
 (2)

Using (2) in (c) we retrieve

$$\begin{split} 2[H(X,Y) + H(Y,Z) + H(X,Z)] &\geq 3H(X,Y,Z) + H(X) + H(Y) + H(Z) \\ &\geq 3H(X,Y,Z) + H(X,Y,Z) \\ &= 4H(X,Y,Z). \end{split}$$

(d) Let $\{(x_i, y_i, z_i) : i = 1, ..., n\}$ be our set of points. Suppose that X, Y, Z are random variables representing the components of the n points with respect to the x, y, z axes. Furthemore, suppose that three random variables are such that $Pr((X, Y, Z) = (x_i, y_i, z_i)) = 1/n$ for every $1 \le i \le n$. This implies that

$$H(X, Y, Z) = \log n. \tag{3}$$

Consequently the random couples (X, Y), (X, Z), (Y, Z) represent the projections of the points respectively, on the xy, xz and yz axes. We can thus say that

$$H(X,Y) \le \log n_{xy} \tag{4}$$

$$H(X,Z) \le \log n_{xz} \tag{5}$$

$$H(Y,Z) \le \log n_{yz}.\tag{6}$$

Using (3),(4),(5),(6) in (d) we retrieve the following:

$$\log(n_{xy}n_{xz}n_{yz}) \ge H(X,Y) + H(Y,Z) + H(X,Z)] \ge 2H(X,Y,Z) = 2\log n.$$

Which is equivalent to:

$$(n_{xy}n_{xz}n_{yz}) \ge n^2.$$

Problem 3: Conditional KL divergence

We saw in class that a probability kernel $P_{Y|X} : \mathcal{X} \to \mathcal{Y}$ is a matrix $P_{Y|X} = P_{Y|X}(y|x) : x \in \mathcal{X}, y \in \mathcal{Y}$ such that $P_{Y|X}(y|x) \ge 0$, and for each $x \in \mathcal{X}, \sum_{y} P_{Y|X}(y|x) = 1$. Let $P_X \in \Pi(\mathcal{X})$ be a probability distribution on \mathcal{X} . We define the *conditional KL divergence* between two probability kernels $P_{Y|X} : \mathcal{X} \to \mathcal{Y}$ and $Q_{Y|X} : \mathcal{X} \to \mathcal{Y}$ given P_X to be

$$D(P_{Y|X} \| Q_{Y|X} | P_X) \triangleq \sum_{x \in \mathcal{X}} P_X(x) D(P_{Y|X}(\cdot | x) \| Q_{Y|X}(\cdot | x))$$

where for every x, $D(P_{Y|X}(\cdot|x) || Q_{Y|X}(\cdot|x))$ is the standard KL divergence between the two distributions $P_{Y|X}(\cdot|x)$ and $Q_{Y|X}(\cdot|x)$ over \mathcal{Y} .

(a) (Chain rule of the KL divergence) Show that

$$D(P_{X,Y} || Q_{X,Y}) = D(P_X || Q_X) + D(P_{Y|X} || Q_{Y|X} || P_X)$$

where $P_{X,Y}$ and $Q_{X,Y}$ are two joint distributions on $\mathcal{X} \times \mathcal{Y}$ such that $P_{X,Y}(x,y) = P_X(x)P_{Y|X}(y|x)$ and $Q_{X,Y}(x,y) = Q_X(x)Q_{Y|X}(y|x)$. (b) Using (a), show that

$$D(P_{Y|X} || Q_{Y|X} || P_X) = D(P_{X,Y} || Q_{X,Y})$$

where $P_{X,Y}(x,y) = P_X(x) P_{Y|X}(y|x)$ and $Q_{X,Y}(x,y) = P_X(x) Q_{Y|X}(y|x)$.

(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class, show that $D(P_Y || Q_Y) \le D(P_Y || Y || Q_Y || Y || P_Y)$

where
$$P_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) P_{Y|X}(y|x)$$
 and $Q_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) Q_{Y|X}(y|x)$.

Solution 3. (a)

$$D(P_{XY}||Q_{XY}) = \sum_{x,y} P_{XY}(x,y) \log \frac{P_{XY}(x,y)}{Q_{XY}(x,y)}$$

= $\sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_X(x) P_{Y|X}(y|x)}{Q_X(x) Q_{Y|X}(y|x)}$
= $\sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_X(x)}{Q_X(x)} + \sum_{x,y} P_X(x) P_{Y|X}(y|x) \log \frac{P_{Y|X}(y|x)}{Q_{Y|X}(y|x)}$
= $D(P_X||Q_X) + \sum_x P_X(x) D(P_{Y|X}(\cdot|x))||Q_{Y|X}(\cdot|x)) = D(P_X||Q_X) + D(P_{Y|X}||Q_{Y|X}|P_X).$

(b)

$$D(P_{XY} || Q_{XY}) = D(P_X || P_X) + D(P_{Y|X} || Q_{Y|X} || P_X) = D(P_{Y|X} || Q_{Y|X} || P_X)$$

(c) Define the kernel

$$W(\tilde{y}|x,y) = \begin{cases} 1, & \text{if } \tilde{y} = y, \\ 0, & \text{otherwise.} \end{cases}$$

Then we have $P_{\tilde{Y}}(\tilde{y}) = \sum_{x,y} P_{XY}(x,y)W(\tilde{y}|x,y) = P_Y(\tilde{y})$ and $Q_{\tilde{Y}}(\tilde{y}) = \sum_{x,y} Q_{XY}(x,y)W(\tilde{y}|x,y) = Q_Y(\tilde{y})$. Hence, by the DPI we have

$$D(P_{Y|X} \| Q_{Y|X} | P_X) = D(P_{XY} \| Q_{XY}) \ge D(P_{\tilde{Y}} \| Q_{\tilde{Y}}) = D(P_Y \| Q_Y).$$

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets \mathcal{X} and \mathcal{Y} with joint probability distribution P_{XY} , and let I(X;Y) be their mutual information.

(a) Show that for every function f(X, Y) such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite,

$$I(X;Y) \ge \mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]].$$

(b) Show that there is a function $\tilde{f}(X,Y)$ such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite and

$$I(X;Y) = \mathbb{E}_{P_{XY}}[\tilde{f}(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{\tilde{f}(X,Y)}]].$$

(c) Conclude that

$$I(X;Y) = \sup_{f} \mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]]$$

where the sup is over all functions f such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite.

Solution 4. (a)

$$\mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]] = \mathbb{E}_{P_Y}[\mathbb{E}_{P_X|Y}[f(X,Y)] - \log \mathbb{E}_{P_X}[e^{f(X,Y)}]]$$
$$\leq \mathbb{E}_{P_Y}[D(P_{X|Y}||P_X)] = I(X;Y)$$

where the inequality is due to the Donsker-Varadhan form of the KL divergence seen in class.

(b) Pick $f(x,y) = \log \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)}$. For this choice of f, $E_{P_XP_Y}[e^{f(X,Y)}]$ is finite and simple substitution shows that $E_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]] = I(X;Y)$.

(c) By (a) we know that $\sup_f \mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]]$ is a lower bound on I(X;Y). By (b) we know that the bound can be achieved with $f(x,y) = \log \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)}$. This proves that the bound is actually an equality.

Problem 5: *f*-divergences

Suppose f is a convex function defined on $(0, \infty)$ with f(1) = 0. Define the f-divergence of a distribution P from a distribution Q as

$$D_f(P||Q) \triangleq \sum_x Q(x)f(P(x)/Q(x)).$$

In the sum above we take $f(0) := \lim_{t \to 0} f(t)$, 0f(0/0) := 0, and $0f(a/0) := \lim_{t \to 0} tf(a/t) = a \lim_{t \to 0} tf(1/t)$.

- (a) Show that the following basic properties hold:
 - 1. $D_{f_1+f_2}(P||Q) = D_{f_1}(P||Q) + D_{f_2}(P||Q)$ 2. $D_f(P||P) = 0$ 3. $D_f(P||Q) \ge 0$
- (b) (Monotonicity) Show that $D_f(P_{XY} || Q_{XY}) \ge D_f(P_X || Q_X)$.
- (c) (Data processing inequality) Show that for any probability kernel W(y|x) from \mathcal{X} to \mathcal{Y} , and any two distributions P_X and Q_X on \mathcal{X}

$$D_f(P_X || Q_X) \ge D_f(P_Y || Q_Y)$$

where P_Y and Q_Y are probability distributions on \mathcal{Y} given by $P_Y(y) = \sum_x P_X(x)W(y|x)$ and $Q_Y(y) = \sum_x Q_X(x)W(y|x)$.

(d) Show that if f is strictly convex in 1, then $D_f(P||Q) = 0$ if and only if P = Q.

Solution 5. (a)

1.

$$D_{f_1+f_2}(P||Q) = \sum_x Q(x) \left[f_1(P(x)/Q(x)) + f_2(P(x)/Q(x)) \right]$$

=
$$\sum_x Q(x) f_1(P(x)/Q(x)) + \sum_x Q(x) f_2(P(x)/Q(x))$$

=
$$D_{f_1}(P||Q) + D_{f_2}(P||Q).$$

2. $D_f(P||P) = \sum_x P(x)f(P(x)/P(x)) = \sum_x P(x)f(1) = 0.$

3. $D_f(P||Q) = \sum_x Q(x)f(P(x)/Q(x)) \ge f\left(\sum_x Q(x)\frac{P(x)}{Q(x)}\right) = f(\sum_x P(x)) = f(1) = 0$ where we used Jensen's inequality since f is convex.

(b)

$$D_f(P_{XY} || Q_{XY}) = \sum_{x,y} Q_{XY}(x,y) f\left(\frac{P_{XY}(x,y)}{Q_{XY}(x,y)}\right)$$
$$= \sum_x Q_X(x) \sum_y Q_{Y|X}(y|x) f\left(\frac{P_{XY}(x,y)}{Q_{XY}(x,y)}\right)$$
$$\ge \sum_x Q_X(x) f\left(\sum_y Q_{Y|X}(y|x) \frac{P_{XY}(x,y)}{Q_{XY}(x,y)}\right)$$
$$= \sum_x Q_X(x) f\left(\frac{\sum_y P_{XY}(x,y)}{Q_X(x)}\right)$$
$$= \sum_x Q_X(x) f\left(\frac{P_X(x)}{Q_X(x)}\right) = D_f(P || Q)$$

where the inequality is again due to Jensen.

(c) From (b) we have $D_f(P_{XY} || Q_{XY}) \ge D_f(P_Y || Q_Y)$. But we also have

$$D_f(P_{XY} || Q_{XY}) = \sum_{x,y} Q_X(x) W(y|x) f\left(\frac{P_X(x) W(y|x)}{Q_X(x) W(y|x)}\right)$$
$$= \sum_x Q_X(x) \left(\sum_y W(y|x)\right) f\left(\frac{P_X(x)}{Q_X(x)}\right)$$
$$= D_f(P_X || Q_X)$$

that is, $D_f(P_X || Q_X) \ge D_f(P_Y || Q_Y)$.

(d) Since f is strictly convex in 1, for every s, t > 0 and $0 < \alpha < 1$ such that $\alpha s + (1 - \alpha)t = 1$, we have $\alpha f(s) + (1 - \alpha)f(t) > f(1) = 0$. Suppose by contradiction that $P \neq Q$ and $D_f(P||Q) = 0$. Then there exists \tilde{x} such that $P(\tilde{x}) \neq Q(\tilde{x})$. Define the random variable $Y = 1_{\{X = \tilde{x}\}}$, and let $p \triangleq P(\tilde{x})$ and $q \triangleq Q(\tilde{x})$. Using (c) we get that $0 \leq D_f(P_Y||Q_Y) = D_f(p||q) \leq D_f(P||Q) = 0$, i.e., $D_f(p||q) = qf\left(\frac{p}{q}\right) + (1 - q)f\left(\frac{1-p}{1-q}\right) = 0$. But this contradicts the fact that f is strictly convex in 1, since if you set $s = \frac{p}{q}$, $t = \frac{1-p}{1-q}$ and $\alpha = q$, the last equation can be rewritten as $\alpha f(s) + (1 - \alpha)f(t) = 0$, a contradiction.

Problem 6: Entropy and combinatorics

Let $n \ge 1$ and fix some $0 \le k \le n$. Let $p = \frac{k}{n}$ and let $T_p^n \subset \{0,1\}^n$ be the set of all binary sequences with exactly np ones.

(a) Show that

$$\log |T_p^n| = nh(p) + O(\log n)$$

where $h(p) = -p \log p - (1-p) \log(1-p)$ is the binary entropy function. Hint: Stirling's approximation states that for every $n \ge 1$,

$$e^{\frac{1}{12n+1}}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \le n! \le e^{\frac{1}{12n}}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$

(b) Let $Q^n = \text{Bernoulli}(q)^n$ be the i.i.d. Bernoulli distribution on $\{0,1\}^n$. Show that

$$\log Q^n[T_p^n] = -nd(p||q) + O(\log n)$$

where $d(p||q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$ is the binary KL divergence.

Solution 6. (a) When p = 0 or 1, we have $|T_p^n| = 1$, or equivalently $\log |T_p^n| = 0$, so the result holds trivially, since h(p) = 0 for p = 0, 1. For $p \neq 0, 1$, we have that $|T_p^n| = \binom{n}{np} = \frac{n!}{(np)!(n(1-p))!}$. Using Stirling's approximation on the three factorials we get

$$\frac{1}{\sqrt{2\pi np(1-p)}} p^{-np} (1-p)^{-n(1-p)} e^{\frac{1}{12n+1} - \frac{1}{12np} - \frac{1}{12n(1-p)}} \le |T_p^n| \\ \le \frac{1}{\sqrt{2\pi np(1-p)}} p^{-np} (1-p)^{-n(1-p)} e^{\frac{1}{12n} - \frac{1}{12np+1} - \frac{1}{12n(1-p)+1}}$$

By taking the log on each side, we get

$$\begin{split} nh(p) &- \frac{1}{2}\log(2\pi np(1-p)) + \frac{1}{12n+1} - \frac{1}{12np} - \frac{1}{12n(1-p)} \le \log|T_p^n| \\ &\le nh(p) - \frac{1}{2}\log(2\pi np(1-p)) + \frac{1}{12n} - \frac{1}{12np+1} - \frac{1}{12n(1-p)+1}. \end{split}$$

Since $\frac{1}{n} \le p \le \frac{n-1}{n}$ and the same holds for 1-p, we can obtain the following (loose) bounds:

$$\begin{aligned} -\frac{1}{2}\log n + \frac{1}{2}\log(2\pi) &\leq \frac{1}{2}\log(2\pi np(1-p)) \leq \frac{1}{2}\log n + \frac{1}{2}\log(2\pi) \\ &\frac{1}{12n+1} - \frac{1}{12np} - \frac{1}{12n(1-p)} \geq -2 \\ &\frac{1}{12n} - \frac{1}{12np+1} - \frac{1}{12n(1-p)+1} \leq 1 \end{aligned}$$

so that we get

$$nh(p) - \frac{1}{2}\log n - \frac{1}{2}\log(2\pi) - 2 \le \log|T_p^n| \le nh(p) + \frac{1}{2}\log n - \frac{1}{2}\log(2\pi) + 1$$

i.e., $\log |T_p^n| = nh(p) + O(\log n)$.

(b) We have

$$Q^{n}[T_{p}^{n}] = \binom{n}{np} q^{np} (1-q)^{n(1-p)} = |T_{p}^{n}| q^{np} (1-q)^{n(1-p)}$$

and therefore

$$\begin{split} \log Q^n[T_p^n] &= \log |T_p^n| + np \log q + n(1-p) \log(1-q) \\ &= nh(p) + np \log q + n(1-p) \log(1-q) + O(\log n) \\ &= -nd(p \| q) + O(\log n) \end{split}$$

where in the last step we used (a).