EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 5

Exercise 1:

(a) Let (x, y) denote the standard coordinates on \mathbb{R}^{2}. Verify that $(\widetilde{x}, \widetilde{y})$ are smooth global coordinates on \mathbb{R}^{2}, where

$$
\widetilde{x}=x \quad \text { and } \quad \widetilde{y}=y+x^{3} .
$$

Let p be the point $(1,0) \in \mathbb{R}^{2}$ (in standard coordinates), and show that

$$
\left.\frac{\partial}{\partial x}\right|_{p} \neq\left.\frac{\partial}{\partial \widetilde{x}}\right|_{p}
$$

even though the coordinate functions x and \widetilde{x} are identically equal.
(This shows that each coordinate vector $\partial /\left.\partial x^{i}\right|_{p}$ depends on the entire coordinate system, not just on the single coordinate function x^{i}.)
(b) Polar coordinates on \mathbb{R}^{2} : Consider the map

$$
\begin{aligned}
\Phi: W:=(0,+\infty) \times(-\pi, \pi) & \rightarrow \mathbb{R}^{2} \\
(r, \theta) & \mapsto(r \cos \theta, r \sin \theta) .
\end{aligned}
$$

(i) Show that Φ is a diffeomorphism onto its image $U:=\Phi(W)$.
(Therefore, Φ^{-1} can be considered as a smooth chart on \mathbb{R}^{2}, and it is common to call its component functions the polar coordinates (r, θ) on \mathbb{R}^{2}.)
(ii) Let p be a point in \mathbb{R}^{2} whose polar coordinate representation is $(r, \theta)=(2, \pi / 2)$, and let $v \in T_{p} \mathbb{R}^{2}$ be the tangent vector whose polar coordinate representation is

$$
v=\left.3 \frac{\partial}{\partial r}\right|_{p}-\left.\frac{\partial}{\partial \theta}\right|_{p}
$$

Compute the coordinate representation of v in terms of the standard coordinate vectors

$$
\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p} .
$$

(c) Spherical coordinates on \mathbb{R}^{3} : Consider the map

$$
\begin{aligned}
\Psi: W:=(0,+\infty) \times(0,2 \pi) \times(0, \pi) & \rightarrow \mathbb{R}^{3} \\
(r, \varphi, \theta) & \mapsto(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) .
\end{aligned}
$$

(i) Show that Ψ is a diffeomorphism onto its image $U:=\Psi(W)$.
(Therefore, Ψ^{-1} can be considered as a smooth chart on \mathbb{R}^{3}, and it is common to call its component functions the spherical coordinates (r, φ, θ) on \mathbb{R}^{3}.)
(ii) Express the coordinate vectors

$$
\left.\frac{\partial}{\partial r}\right|_{p},\left.\frac{\partial}{\partial \varphi}\right|_{p},\left.\frac{\partial}{\partial \theta}\right|_{p}
$$

of this chart at some point $p \in U$ in terms of the standard coordinate vectors

$$
\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p},\left.\frac{\partial}{\partial z}\right|_{p}
$$

Exercise 2 (to be submitted by Friday, 27.10.2023, 20:00):
Consider the inclusion $\iota: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$, where both \mathbb{S}^{2} and \mathbb{R}^{3} are endowed with the standard smooth structure. Let $p=\left(p^{1}, p^{2}, p^{3}\right) \in \mathbb{S}^{2}$ with $p^{3}>0$. What is the image of the differential $d \iota_{p}: T_{p} \mathbb{S}^{2} \rightarrow T_{p} \mathbb{R}^{3}$?

Exercise 3:

Let M_{1}, \ldots, M_{k} be smooth manifolds, where $k \geq 2$. Show that $T\left(M_{1} \times \ldots \times M_{k}\right)$ is diffeomorphic to $T\left(M_{1}\right) \times \ldots \times T\left(M_{k}\right)$.

Exercise 4:

(a) Let $F: M \rightarrow N$ be a smooth map. Show that its global differential $d F: T M \rightarrow T N$ (which is just the map whose restriction to each tangent space $T_{p} M \subseteq T M$ is $d F_{p}$) is also a smooth map.
(b) Let $F: M \rightarrow N$ and $G: N \rightarrow P$ be smooth maps. Prove the following assertions:
(i) $d(G \circ F)=d G \circ d F: T M \rightarrow T P$.
(ii) $d\left(\mathrm{Id}_{M}\right)=\mathrm{Id}_{T M}: T M \rightarrow T M$.
(iii) If F is a diffeomorphism, then $d F: T M \rightarrow T N$ is also a diffeomorphism, and it holds that $(d F)^{-1}=d\left(F^{-1}\right)$.

Exercise 5:

(a) Let $f: X \rightarrow S$ be a map from a topological space X to a set S. Show that if X is connected and if f is locally constant, i.e., for every $x \in X$ there exists a neighborhood U of x in X such that $\left.f\right|_{U}: U \rightarrow S$ is constant, then f is constant.
[Hint: Show that f is continuous when S is endowed with the discrete topology.]
(b) Let M and N be smooth manifolds and let $F: M \rightarrow N$ be a smooth map. Assume that M is connected. Show that $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is the zero map for each $p \in M$ if and only if F is constant.
[Hint: Use (a). You may also use (without proof) the fact that any topological manifold is locally (path) connected.]

