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It follows that zxj DPi A
j
i x
i . Thus, the map sending x to zx is an invertible linear

map and hence a diffeomorphism, so any two such charts are smoothly compatible.
The collection of all such charts thus defines a smooth structure, called the standard
smooth structure on V . //

The Einstein Summation Convention

This is a good place to pause and introduce an important notational convention that
is commonly used in the study of smooth manifolds. Because of the proliferation
of summations such as

P
i x
iEi in this subject, we often abbreviate such a sum by

omitting the summation sign, as in

E.x/D xiEi ; an abbreviation for E.x/D
nX
iD1

xiEi :

We interpret any such expression according to the following rule, called the Einstein
summation convention: if the same index name (such as i in the expression above)
appears exactly twice in any monomial term, once as an upper index and once as
a lower index, that term is understood to be summed over all possible values of
that index, generally from 1 to the dimension of the space in question. This simple
idea was introduced by Einstein to reduce the complexity of expressions arising
in the study of smooth manifolds by eliminating the necessity of explicitly writing
summation signs. We use the summation convention systematically throughout the
book (except in the appendices, which many readers will look at before the rest of
the book).

Another important aspect of the summation convention is the positions of the
indices. We always write basis vectors (such as Ei ) with lower indices, and com-
ponents of a vector with respect to a basis (such as xi ) with upper indices. These
index conventions help to ensure that, in summations that make mathematical sense,
each index to be summed over typically appears twice in any given term, once as a
lower index and once as an upper index. Any index that is implicitly summed over
is a “dummy index,” meaning that the value of such an expression is unchanged if a
different name is substituted for each dummy index. For example, xiEi and xjEj
mean exactly the same thing.

Since the coordinates of a point
!
x1; : : : ; xn

"
2Rn are also its components with

respect to the standard basis, in order to be consistent with our convention of writing
components of vectors with upper indices, we need to use upper indices for these co-
ordinates, and we do so throughout this book. Although this may seem awkward at
first, in combination with the summation convention it offers enormous advantages
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when we work with complicated indexed sums, not the least of which is that expres-
sions that are not mathematically meaningful often betray themselves quickly by
violating the index convention. (The main exceptions are expressions involving the
Euclidean dot product x ! y DPi x

iyi , in which the same index appears twice in
the upper position, and the standard symplectic form on R2n, which we will define
in Chapter 22. We always explicitly write summation signs in such expressions.)

More Examples

Now we continue with our examples of smooth manifolds.

Example 1.25 (Spaces of Matrices). Let M.m " n;R/ denote the set of m " n
matrices with real entries. Because it is a real vector space of dimension mn under
matrix addition and scalar multiplication, M.m"n;R/ is a smoothmn-dimensional
manifold. (In fact, it is often useful to identify M.m " n;R/ with Rmn, just by
stringing all the matrix entries out in a single row.) Similarly, the space M.m"n;C/
of m " n complex matrices is a vector space of dimension 2mn over R, and thus
a smooth manifold of dimension 2mn. In the special case in which mD n (square
matrices), we abbreviate M.n " n;R/ and M.n " n;C/ by M.n;R/ and M.n;C/,
respectively. //

Example 1.26 (Open Submanifolds). Let U be any open subset of Rn. Then U is
a topological n-manifold, and the single chart .U; IdU / defines a smooth structure
on U .

More generally, let M be a smooth n-manifold and let U #M be any open
subset. Define an atlas on U by

AU D
˚
smooth charts .V;'/ for M such that V # U

!
:

Every point p 2 U is contained in the domain of some chart .W;'/ forM ; if we set
V DW \ U , then .V;'jV / is a chart in AU whose domain contains p. Therefore,
U is covered by the domains of charts in AU , and it is easy to verify that this is
a smooth atlas for U . Thus any open subset of M is itself a smooth n-manifold
in a natural way. Endowed with this smooth structure, we call any open subset an
open submanifold of M . (We will define a more general class of submanifolds in
Chapter 5.) //

Example 1.27 (The General Linear Group). The general linear group GL.n;R/
is the set of invertible n"nmatrices with real entries. It is a smooth n2-dimensional
manifold because it is an open subset of the n2-dimensional vector space M.n;R/,
namely the set where the (continuous) determinant function is nonzero. //

Example 1.28 (Matrices of Full Rank). The previous example has a natural gener-
alization to rectangular matrices of full rank. Supposem< n, and let Mm.m"n;R/
denote the subset of M.m " n;R/ consisting of matrices of rank m. If A is an ar-
bitrary such matrix, the fact that rankA D m means that A has some nonsingular
m "m submatrix. By continuity of the determinant function, this same submatrix
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