EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 1 - Solutions

Exercise 1: Show that if a topological space M is locally Euclidean at some point $p \in M$ (i.e., p has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^{n}), then p has a neighborhood that is homeomorphic to the whole space \mathbb{R}^{n} or to an open ball in \mathbb{R}^{n}.

Solution: We know that there is an open neighborhood U of p and a homeomorphism φ from U to an open subset $\varphi(U)$ of \mathbb{R}^{n}. We can find a ball $B(\varphi(p), r) \subseteq \varphi(U) \subseteq \mathbb{R}^{n}$ for some $r>0$. Consider the map $\psi: B(\varphi(p), r) \rightarrow \mathbb{R}^{n}$ given by

$$
\psi(x):=\frac{x-\varphi(p)}{r-\|x-\varphi(p)\|}
$$

One can easily verify that ψ is a homeomorphism with inverse

$$
\psi^{-1}(y)=\varphi(p)+\frac{y}{1+\|y\|} .
$$

Set $U^{\prime}:=\varphi^{-1}(B(\varphi(p), r)) \subseteq M$ and observe that U^{\prime} is a neighborhood of p in M. Then the map

$$
\theta:=\left.\psi \circ \varphi\right|_{U^{\prime}}: U^{\prime} \rightarrow \mathbb{R}^{n}
$$

is a homeomorphism as both ψ and φ are.

Exercise 2: Examine which of the following spaces (endowed with the subspace topology) is locally Euclidean:
(a) The closed interval $[0,1] \subseteq \mathbb{R}$.
(b) The "bent line" $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x y=0\right\} \subseteq \mathbb{R}^{2}$.

Solution:

(a) The interval $[0,1]$ is not locally Euclidean. Suppose by contradiction that it is locally Euclidean. By Exercise 1, there is a neighborhood $U \subseteq[0,1]$ of 0 which is homeomorphic to \mathbb{R}^{n} for some $n \geq 1$. Denote by $\varphi: U \rightarrow \mathbb{R}^{n}$ a homeomorphism and note that U is connected, and thus of the form $U=[0, \varepsilon)$ for some $\varepsilon>0$. But then $U \backslash\{0\}=(0, \varepsilon)$
is homeomorphic to $\mathbb{R}^{n} \backslash\{\varphi(0)\}$, and since $(0, \varepsilon)$ is still connected, we infer that $n>1$ $(\mathbb{R}$ minus a point has two connected components). Now there are two ways to conclude: First, note that $(0, \varepsilon)$ and $\mathbb{R}^{n} \backslash\{\varphi(0)\}$ are topological manifolds of dimension 1 and n, respectively, and since the dimension of a topological manifold is a topological invariant, we obtain $n=1$, a contradiction. Second, if $x \in(0, \varepsilon)$, then $(0, \varepsilon) \backslash\{x\}$ is homeomorphic to $\mathbb{R}^{n} \backslash\{\varphi(0), \varphi(x)\}$; as $n>1$, the latter is connected, while the former is not, a contradiction. (b) The "bent line"

$$
L:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x y=0\right\}
$$

is locally Euclidean. Indeed, denote by $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the counterclockwise rotation around the origin by 45°. As this is a homeomorphism, we obtain that $L \cong \varphi(L)$. But now note that $\varphi(L)$ coincides with the graph of the absolute value function $|\bullet|: \mathbb{R} \rightarrow \mathbb{R}$. Thus, we obtain $L \cong \varphi(L) \cong \mathbb{R}$.

Exercise 3: Consider the set

$$
X=\left\{(x, y) \in \mathbb{R}^{2} \mid y \in\{-1,1\}\right\} \subseteq \mathbb{R}^{2}
$$

and let M be the quotient of X by the equivalence relation generated by $(x,-1) \sim(x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second-countable, but not Hausdorff.

Solution: Denote by $\pi: X \rightarrow M$ the quotient map $(x, y) \mapsto[(x, y)]$. The two "origins" are the equivalence classes of the points $(0, y) \in X$ for $y= \pm 1$; these classes have just one element each and we denote them by $0_{y}=[(0, y)]=\{(0, y)\} \in M$. In contrast, the equivalence class of any other point $(x, y) \in X$ with $x \neq 0$ is the two-point set $\widetilde{x}=[(x, y)]=\{(x, 1),(x,-1)\} \in M$. Therefore, M is the set of equivalence classes

$$
M=X / \sim=\left\{0_{1}\right\} \cup\left\{0_{-1}\right\} \cup\{\widetilde{x}\}_{x \neq 0}
$$

The space M is locally Euclidean of dimension 1 because it is the union of two open sets

$$
\mathbb{R}_{y}=\{[(x, y)] \in M \mid x \in \mathbb{R}\} \quad(\text { for } y= \pm 1)
$$

each of which is homeomorphic to \mathbb{R} via the map

$$
\begin{aligned}
\varphi_{y}: \mathbb{R} & \rightarrow \mathbb{R}_{y} \\
x & \mapsto[(x, y)] .
\end{aligned}
$$

To see that the sets \mathbb{R}_{y} are open in the quotient topology, note that

$$
\pi^{-1}\left(\mathbb{R}_{y}\right)=X \backslash\{(0,-y)\}
$$

which is open in X.
Moreover, M is second-countable because it is the union of two second-countable open subsets, namely, the sets $\mathbb{R}_{y} \cong \mathbb{R}($ for $y= \pm 1)$.

Finally, M is not Hausdorff: let U_{-1} be any open set containing 0_{-1} and let U_{1} be any open set containing 0_{1}. For $y \in\{-1,1\}$, as $\pi^{-1}\left(U_{y}\right)$ is an open subset of X containing $(0, y)$, it contains a set of the form $V_{y}=\left(-\varepsilon_{y}, \varepsilon_{y}\right) \times\{y\}$ for some $\varepsilon_{y}>0$. Now let x be a real number such that $0<x<\min \left\{\varepsilon_{-1}, \varepsilon_{1}\right\}$. Then $[(x,-1)]=[(x, 1)]$ is contained in both U_{-1} and U_{1}. Hence, 0_{-1} and 0_{1} cannot be separated by disjoint open neighborhoods.

Exercise 4: Consider the subset

$$
V=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-1)(x-y)=0\right\} \subseteq \mathbb{R}^{2}
$$

endowed with the subspace topology. Show that V is not a topological manifold.
Solution: The subset $V \subseteq \mathbb{R}^{2}$ and a disc with small radius centered at the point $(1,1) \in$ \mathbb{R}^{2} (which is the point of intersection of the lines $y=x$ and $x=1$) have been plotted below.

Since V is a subspace of \mathbb{R}^{2}, it is Hausdorff and second-countable. By considering any point $p \in V \backslash\{(1,1)\}$, we conclude that if V were a topological manifold, then it would necessarily have dimension 1 . Assume now by contradiction that V is a topological 1-manifold. Then there exists an open neighborhood W of $(1,1)$ which is homeomorphic to an open subset G of \mathbb{R}; denote by φ this homeomorphism. For sufficiently small $\varepsilon>0$, the set $U:=B((1,1), \varepsilon) \cap W$ (the red disc above) is an open neighborhood of $(1,1)$ in W, which is connected. Hence, its homeomorphic image $I:=\varphi(U)$ in $G \subseteq \mathbb{R}$ is connected as well, and thus $I \subseteq \mathbb{R}$ is an open interval. Observe now that $U \backslash\{(1,1)\}$ has four connected components, whereas $I \backslash\{\varphi(1,1)\}$ has only two connected components, a contradiction. In conclusion, V is not a topological manifold.

Exercise 5: Let M_{1}, \ldots, M_{k} be topological manifolds of dimensions n_{1}, \ldots, n_{k}, respectively, where $k \geq 2$. Show that the product space $M_{1} \times \ldots \times M_{k}$ is a topological manifold of dimension $n_{1}+\ldots+n_{k}$.

In particular, the n-torus $\mathbb{T}^{n}:=\mathbb{S}^{1} \times \ldots \times \mathbb{S}^{1}$ is a topological n-manifold.
Solution: Any finite product of Hausdorff spaces is also Hausdorff: two distinct points of the product differ at some coordinate, where we can separate them by two disjoint neighborhoods. Moreover, if for each $1 \leq i \leq k$ we denote by \mathcal{B}_{i} a countable basis for the topology of M_{i}, then

$$
\mathcal{B}:=\left\{B_{1} \times \cdots \times B_{k} \mid \forall 1 \leq i \leq k: B_{i} \in \mathcal{B}_{i}\right\}
$$

is a countable basis for the topology of the product $M_{1} \times \cdots \times M_{k}$. Finally, given any point $P=\left(p_{1}, \ldots, p_{k}\right) \in M_{1} \times \cdots \times M_{k}$, by Exercise 1 we know that for every $1 \leq i \leq k$ there exists an open neighborhood $U_{i} \subseteq M_{i}$ of p_{i} such that $U_{i} \cong \mathbb{R}^{n_{i}}$. Therefore, $U:=$ $U_{1} \times \cdots \times U_{k}$ is an open neighborhood of P such that $U \cong \mathbb{R}^{n_{1}+\ldots+n_{k}}$. In conclusion, $M_{1} \times \cdots \times M_{k}$ is a topological manifold of dimension $n_{1}+\ldots+n_{k}$.

