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1 Introduction

Mechanical properties of composite materials can be assessed using a wide variety of tests 
such as tensile, compressive, shearing, or bending tests. These tests enable the determina-
tion of intrinsic properties, the evaluation of anisotropies by measuring the different stiffness 
moduli and Poisson ratios as well as the evaluation of the structural stiffness which depends 
also on the specimen geometry.

The objective of this TP is to perform selected mechanical tests to study the mechanical 
behaviour of different types of composite materials and structures:

• Flexural stiffness using a three point bending test

Materials tested will be a laminate of epoxy resin reinforced by glass fibre fabrics, and
sandwich structures produced using this laminate for the skin layers and several other
materials for the core. The principle of a sandwich structure is to have a lightweight
core material between two skin layers, as this construction yields a structure that
exhibits a much higher stiffness but the same mass as the skin alone.

• Mode I energy release rate using a double cantilever beam (DCB) test

The material tested will be a laminate of epoxy resin reinforced with a stack of 16
glass fiber twill weave plies. The fracture of composites and laminates occurs mainly
by delamination of the laminate plies. Furthermore, breakage is influenced by the
type of the reinforcement phase (unidirectional fibres, fabrics, mats, and so on). To
characterize the delamination resistance, the principles of linear mechanics of a beam
stressed in mode I fracture can be used.
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2. Theory

2 Theory

2.1 Flexural stiffness of composite beams

According to the Euler-Bernouilli beam theory, the maximum deflection of a simply sup-
ported beam loaded in a three point bending configuration occurs at its centre. The deflected
distance δ is directly proportional to the load P , and depends on the test configuration (dis-
tance between supports L) and the beam’s materials properties (elastic modulus E) and
geometry (second moment of area of the beam’s cross-section I):

δ =
L3

48EI
P (1)

The flexural stiffness of a beam D is then defined as the product of the elastic modulus
E and the second moment of area I:

D = EI (2)

Figure 1: a) Three point bending test showing the applied load P , the span L and the
deflection of a beam δ, and b) rectangular cross section of the beam, iwth height h and
width b.

For a beam with a rectangular cross-section of height h and width b such as the one
depicted in figure 1, the value of the second moment of area is I = bh3

12 , and therefore
equations 1 and 2 can be rewritten as:

δ =
L3

4Ebh3
P (3)

D = E
bh3

12
(4)

In the case of a sandwich structure with the cross sectional geometry depicted in figure
2, the total flexural stiffness will be the sum of the flexural stiffnesses of the outer skins Ds

and the core Dc:

D = 2Ds +Dc = 2EsIs + EcIc = Es

(
bt3

6
+
btd2

2

)
+ Ec

bc3

12
(5)
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2.2 Delamination of composites

Figure 2: a) Three point bending test and geometry of a sandwich beam, including the span
L, the load P , the skin thickness t, the core thickness c, the height h and width b, and the
geometrical quantity d, which corresponds to the core + one skin thickness.

where Es and Ec are the elastic moduli of the skin and core respectively.

If we consider that the skin thickness is negligible and that the core elastic modulus is
small compared to the skin one, then equation 5 can be approximated by:

D ≈ Es
btd2

2
(6)

However, the classical Euler-Bernouilli deflection falls short when applied to sandwich
beams, and equations 1 and 3 become insufficient to describe their mechanical behaviour in
a three point bending test. In order to correct the total deflection, the shear deformation of
the beam must also be taken into account, as shown in figure 3. To a first approximation,
we can assume that the bulk of the shear will be bore by the core, and the total deflection
of the sandwich can be rewritten as:

δ =
L3

48D
P +

L

4S
P (7)

where D ≈ Es
btd2

2 is the flexural stiffness of the beam and S = Gc
bd2

c is its shear stiffness,
which depends on the shear modulus of the core Gc.

2.2 Delamination of composites

In a composite structure, fracture properties are significantly determined by the nature of
the adhesion between the fibres and the matrix. This can lead to various failure modes such
as debonding, fiber or matrix rupture, or delamination. Some of the main events that occur
during composite damage can be observed in figure 4. Delamination tests offer a good way
to characterize the damage caused by fatigue or impact.
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2.2 Delamination of composites

Figure 3: a) Classical Euler-Bernouilli deflection of a sandwich beam, and b) shear-corrected
deflection of a sandwich beam, depicting the amount due to bending δbend and shear δshear.

Two interdependent approaches exist in the context of linear fracture mechanics to study
crack propagation in materials: the energy approach (energy release rate G) and the local
stress field approach (stress concentration factor K).

Figure 4: Different modes of composite damage.

In the energy approach the propagation of a crack in a stressed, homogeneous and elastic
material is thermodynamically possible. According to Irwin’s criterion, the energy release
rate G is defined as the negative variation in potential elastic energy Uel with respect to
crack area A:

G = −dUel
dA

(8)

If we consider a slab of material with thickness B containing an edge crack of length a
and loaded with a force P that produces a displacement δ such as the one depicted in figure
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2.2 Delamination of composites

5, the energy release rate can be rewritten as:

G = −dUel
dA

= − d

d(Ba)

(
−1

2
Pδ

)
=

P

2B

dδ

da
(9)

Figure 5: Diagram for propagation of an edge crack.

Generally speaking, crack propagation occurs if the reduction of elastic energy caused
by the relaxation of the material is at least infinitesimally larger than the energy dissipated
in other processes (creation of new crack surfaces, plastic deformation, viscoelastic effects,
and so on). In the context of linear fracture mechanics, this means that the energy release
rate needs to be greater than the material’s resistance to crack extension R:

G ≥ R (10)

Furthermore, crack propagation can happen in a stable or unstable fashion depending
on the variation of G and R with the crack extension:

dG

da
<
dR

da
⇒ stable crack propagation

dG

da
≥ dR

da
⇒ unstable crack propagation

(11)

Stable crack propagation is minimal in brittle materials such as ceramics that undergo
little or no plastic deformation, and such materials catastrophically break in an unstable
fashion when the energy release rate reaches a critical value Gc, which occurs for a critical
crack length ac as per Griffith’s theory. On the other hand, metals and composites allow
for stable and steady propagation of cracks with lengths smaller than ac, above which they
also break in an unstable fashion.

2.2.1 Mode I fracture

The analysis of delamination of a composite material in mode I can be illustrated by the
behaviour of a beam in bending:
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3. Experiments

Figure 6: Bending of a cantilever beam of length L with a load P produces a deflection δ.

Due to the anisotropic nature of many composites (matrix + reinforcement), the original
Euler-Bernouilli solution for a cantilever beam can be adapted to include the effects of shear
and rotation by using an exponent n, and therefore the deflection δ can be written as:

δ =
Ln

3EI
P (12)

where P is the applied load, EI the flexural stiffness of the beam and L is its length. In
a delamination experiment (for example with a double cantilever beam configuration), the
crack length a is equivalent to the length L in equation 12, and we can therefore calculate
the energy release rate using equations 9 and 12:

dδ

da
= n

an−1

3EI
P = n

δ

a
⇒ GI =

nPδ

2aB
(13)

2.2.2 Mode II fracture

In reality, the breakage of a composite due to delamination is often accompanied by shear 
failure (mode II). According to the beam theory, a bending load causes a maximum shear 
stress in the neutral fibre of the beam, while the tension and compression stresses are zero. 
Thus, a beam (pre-cracked in the neutral fibre) has to be loaded in bending to obtain a 
pure mode II loading.

3 Experiments

3.1 Three-point bending test of sandwiches

The composite structures tested in this part of the TP are made of laminates of an epoxy 
resin reinforced by glass fibre fabrics, and prepared by contact moulding. For the sandwich
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3.2 Mode I delamination test

structure, there are four different core materials available: balsa wood, Nomex, PVC and
crosslinked PEI. The interface between core and skin is made of epoxy.

The tests are performed on the tensile testing machine UTS, using the configuration
’three-point bending’. To avoid damaging the structure, the beam is deformed only elasti-
cally. During each test the load P is recorded as a function of the beam deflection δ, whereby
the beam deflection corresponds to the displacement of the traverse of the machine.

The purpose of the three-point bending test is to study the mechanical behaviour of the
different beams. In the first part, the composite laminate and the sandwich will be tested
using a fixed span L. In the second part, a sandwich will be selected and tested for different
spans.

3.2 Mode I delamination test

For the delamination tests, the UTS is used as well. The principle of the DCB (double
cantilever beam) mode I is illustrated in the following figure:

Figure 7: Configuration of the delamination test in mode I, with applied load P , crack
length a, beam length L, width B, and height 2H.

This standardised test is performed on a laminate sample produced by contact moulding.
The pre-crack of length a0 is thereby obtained by inserting two non-adherent foils (one of
each side of the crack) in the composite beam during fabrication. To be able to clamp the
laminate in that way that the crack can open and thus grow along the interface of two fabric
layers during the test, two pins are glued on the surface of the beam end with crack. The
chosen strain rate is 5 mm/min.

The fracture energy is determined by the calculation of the crack advancement for each
point. Therefore, the position of the crack tip is observed visually and marked every 5 mm
(positions marked on the sample) in the load-displacement curve. The curve recorded by
the UTS shows the load as a function of the displacement.
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3.3 Mode II delamination test

3.3 Mode II delamination test

The test normally used for this mode is the ENF (end notched flexure) test:

Figure 8: Configuration of the delamination test in mode II, with applied load P , crack
length a, beam length 2L, and width B.

Due to the unstable nature of the test geometry, this test will not be performed during
the laboratory demonstration. The interested reader is referred to the bibliography for a
more in-depth approach to the ENF test.

4 Questions

1. For the fix span case, calculate the elastic modulus of the composite laminate Es
and the flexural stiffness D of the beams using the Euler-Bernouilli beam theory.
Compare the results you obtain using different calculation methods, e.g. slope of the
load-displacement curve (equations 1 - 3), sandwich approximation (equation 6)

2. For the sandwich tested at different spans, use the shear-corrected beam deflection
to calculate its flexural stiffness D and shear stiffness S. For this purpose, you can
linearize equation 7 and obtain D and S through its slope and intercept:

δ =
L3

48D
P +

L

4S
P ⇒

{
δ

PL3 = 1
4SL

−2 + 1
48D

δ
PL = 1

48DL
2 + 1

4S

(14)

3. Compare the flexural stiffnesses you obtain in the previous two sections. Do they
make sense? Discuss the influence of the span to depth ratio in the determination
of the flexural rigidity with a three point-bending test, and relate it to the test you
performed. You might want to read through the suggested bibliography.

4. Calculate the average energy release rate in mode I GI (equation 13) with the data
collected from the DCB test (do not forget that this geometry is different from the
single cantilever case). In order to obtain the exponent n, you can take logarithms to
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4. Questions

linearize equation 12 as a function of crack length and determine its slope:

δ =
an

3EI
P ⇒ ln

(
δ

P

)
= n ln(a) + intercept (15)

What does the calculated value of your exponent mean?

Attention:  
1. For three point bending test, the UTM software record the displacement after 

reaching pre-load.
2. δ is equal to the crosshead displacement.
3. check the unit of all the data and results. 
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