

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 3

Exercise 1 (Equivalent characterizations of smoothness):

Let M and N be smooth manifolds and let $F: M \to N$ be a map. Show that F is smooth if and only if either of the following conditions is satisfied:

- (a) For every $p \in M$ there exist smooth charts (U, φ) containing p and (V, ψ) containing F(p) such that $U \cap F^{-1}(V)$ is open in M and the composite map $\psi \circ F \circ \varphi^{-1}$ is smooth from $\varphi(U \cap F^{-1}(V))$ to $\psi(V)$.
- (b) F is continuous and there exist smooth atlases $\{(U_{\alpha}, \varphi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ for M and N, respectively, such that for each α and β , $\psi_{\beta} \circ F \circ \varphi_{\alpha}^{-1}$ is a smooth map from $\varphi_{\alpha}(U_{\alpha} \cap F^{-1}(V_{\beta}))$ to $\psi_{\beta}(V_{\beta})$.

Exercise 2 (Smoothness is a local property):

Let M and N be smooth manifolds and let $F\colon M\to N$ be a map. Prove the following assertions:

- (a) If every point $p \in M$ has a neighborhood U such that $F|_U$ is smooth, then F is smooth.
- (b) If F is smooth, then its restriction to every open subset of M is smooth.

Exercise 3 (to be submitted by Friday, 13.10.2023, 20:00):

Let M, N and P be smooth manifolds. Prove the following assertions:

- (a) If $F: M \to N$ is a smooth map, then the coordinate representation of F with respect to every pair of smooth charts for M and N is smooth.
- (b) If $c: M \to N$ is a constant map, then c is smooth.
- (c) The identity map $\mathrm{Id}_M \colon M \to M$ is smooth.
- (d) If $U \subseteq M$ is an open submanifold, then the inclusion map $\iota : U \hookrightarrow M$ is smooth.

(e) If $F: M \to N$ and $G: N \to P$ are smooth maps, then the composite $G \circ F: M \to P$ is also smooth.

Exercise 4:

Let M_1, \ldots, M_k be smooth manifolds. For each $i \in \{1, \ldots, k\}$, let

$$\pi_i \colon \prod_{j=1}^k M_j \to M_i$$

be the projection onto the *i*-th factor.

- (a) Show that each π_i is smooth.
- (b) Let N be a smooth manifold. Show that a map $F: N \to \prod_{j=1}^{k} M_j$ is smooth if and only if each of the component maps $F_i := \pi_i \circ F: N \to M_i$ is smooth.

Exercise 5:

Let M be a smooth manifold of dimension $n \ge 1$. Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.

[Hint: Show that if f_1, \ldots, f_k are elements of $C^{\infty}(M)$ with non-empty disjoint supports, then they are linearly independent.]

Exercise 6:

Let A and B be disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \leq f(x) \leq 1$ for all $x \in M$, $f^{-1}(0) = A$ and $f^{-1}(1) = B$.