

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 2

Exercise 1:

Let M be a topological manifold. Prove the following assertions:

(a) Every smooth atlas \mathcal{A} for M is contained in a unique maximal smooth atlas, called the *smooth structure determined by* \mathcal{A} .

[Hint: Consider the collection of all charts that are smoothly compatible with every chart in A.]

(b) Two smooth at lases for M determine the same smooth structure if and only if their union is a smooth at las.

Exercise 2:

Consider the topological manifold \mathbb{R} together with the two atlases $(\mathbb{R}, \mathrm{Id}_{\mathbb{R}})$ and (\mathbb{R}, ψ) , where $\psi \colon \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$. Show that the corresponding smooth structures on \mathbb{R} are different, but they are diffeomorphic to each other, i.e., there is a diffeomorphism $(\mathbb{R}, \mathrm{Id}_{\mathbb{R}}) \to (\mathbb{R}, \psi)$.

Exercise 3 (Finite-dimensional vector spaces):

Let V be an \mathbb{R} -vector space of dimension n. Recall that any norm on V determines a topology, which is independent of the choice of norm. Show that V has a natural smooth manifold structure as follows:

(a) Pick a basis E_1, \ldots, E_n for V and consider the map

$$E: \mathbb{R}^n \to V, \ (x^1, \dots, x^n) \mapsto \sum_{i=1}^n x^i E_i.$$

Show that (V, E^{-1}) is a chart for V; in particular, with the topology defined above, V is thus a topological n-manifold.

(b) Given a different basis $\widetilde{E}_1, \ldots, \widetilde{E}_n$ for V, show that the charts (V, E^{-1}) and (V, \widetilde{E}^{-1}) are smoothly compatible. The collection of all such charts of V defines a smooth structure, called the *standard smooth structure on* V.

Exercise 4:

Prove the following assertions:

- (a) The space $M(m \times n, \mathbb{R})$ of $m \times n$ matrices with real entries has a natural smooth manifold structure.
- (b) The general linear group $Gl(n, \mathbb{R})$ (i.e., the group of invertible $n \times n$ matrices with real entries) has a natural smooth manifold structure.
- (c) The subset $M_m(m \times n, \mathbb{R})$ of $M(m \times n, \mathbb{R})$ of matrices of rank m, where m < n has a natural smooth manifold structure. Similarly for $M_n(m \times n, \mathbb{R})$ when n < m.
- (d) The space $\mathcal{L}(V, W)$ of \mathbb{R} -linear maps from V to W, where V and W are two finite-dimensional \mathbb{R} -vector spaces, has a natural smooth manifold structure.

What is the dimension of each of the above smooth manifolds?

Exercise 5 (Product manifolds):

Let M_1, \ldots, M_k be smooth manifolds of dimensions n_1, \ldots, n_k , respectively, where $k \geq 2$. Show that the product space $M_1 \times \ldots \times M_k$ is a smooth manifold of dimension $n_1 + \ldots + n_k$ by constructing a smooth manifold structure on it.

In particular, the *n*-torus $\mathbb{T}^n := \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$ is a smooth *n*-manifold.

Exercise 6 (to be submitted by Friday, 06.10.2023, 20:00):

Consider the *n*-sphere $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$. Denote by $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$ the north pole and by $S = -N = (0, \dots, 0, -1)$ the south pole of \mathbb{S}^n . Define the stereographic projection from the north pole N as follows:

$$\sigma \colon \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n, \quad \sigma(x^1, \dots, x^{n+1}) = \frac{1}{1 - x^{n+1}} (x^1, \dots, x^n).$$

Let $\widetilde{\sigma}(x) = -\sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$; it is called the *stereographic projection from the* south pole.

- (a) For any $x \in \mathbb{S}^n \setminus \{N\}$, show that $\sigma(x) = u$, where (u, 0) is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$. Similarly, show that $\widetilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace.
- (b) Show that σ is bijective, and

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{1}{|u|^2 + 1} (2u^1, \dots, 2u^n, |u|^2 - 1).$$

- (c) Verify that the atlas consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \widetilde{\sigma})$ is a smooth atlas for \mathbb{S}^n , and hence defines a smooth structure on \mathbb{S}^n . (The coordinates defined by σ or $\widetilde{\sigma}$ are called *stereographic coordinates*.)
- (d) Show that the smooth structure determined by the above atlas is the same as the one defined via graph coordinates in the lecture.