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ABSTRACT
Methods for inferring average causal effects have traditionally relied on two key assumptions: (i) the
intervention received by one unit cannot causally influence the outcome of another; and (ii) units can be
organized into nonoverlapping groups such that outcomes of units in separate groups are independent. In
this article, we develop new statistical methods for causal inference based on a single realization of a net-
work of connected units for which neither assumption (i) nor (ii) holds. The proposed approach allows both
for arbitrary forms of interference, whereby the outcome of a unit may depend on interventions received
by other units with whom a network path through connected units exists; and long range dependence,
whereby outcomes for any two units likewise connected by a path in the network may be dependent.
Under network versions of consistency and no unobserved confounding, inference is made tractable by
an assumption that the networks outcome, treatment and covariate vectors are a single realization of a
certain chain graph model. This assumption allows inferences about various network causal effects via the
auto-g-computation algorithm, a network generalization of Robins’ well-known g-computation algorithm
previously described for causal inference under assumptions (i) and (ii). Supplementary materials for this
article are available online.

ARTICLE HISTORY
Received January 2018
Accepted July 2020

KEYWORDS
Direct effect; Indirect effect;
Interference; Network;
Spillover effect

1. Introduction

Statistical methods for inferring average causal effects in a pop-
ulation of units have traditionally assumed (i) that the outcome
of one unit cannot be influenced by an intervention received
by another, also known as the no-interference assumption (Cox
1958; Rubin 1974); and (ii) that units can be organized into
nonoverlapping groups, blocks or clusters such that outcomes
of units in separate groups are independent and the number of
groups grows with sample size. Only fairly recently has causal
inference literature formally considered settings where assump-
tion (i) does not necessarily hold (Hong and Raudenbush 2006;
Sobel 2006; Rosenbaum 2007; Graham 2008; Hudgens and Hal-
loran 2008; Tchetgen Tchetgen and VanderWeele 2012; Manski
2013).

Early work on relaxing assumption (i) considered blocks
of nonoverlapping units, where assumptions (i) and (ii) held
across blocks, but not necessarily within blocks. This setting
is known as partial interference (Hong and Raudenbush 2006;
Sobel 2006; Hudgens and Halloran 2008; Tchetgen Tchetgen and
VanderWeele 2012; Ferracci, Jolivet, and van den Berg 2014; Liu
and Hudgens 2014; Lundin and Karlsson 2014).

More recent literature has sought to further relax the assump-
tion of partial interference by allowing the pattern of inter-
ference to be somewhat arbitrary (Verbitsky-Savitz and Rau-
denbush 2012; Liu, Hudgens, and Becker-Dreps 2016; Aronow
and Samii 2017; Sofrygin and van der Laan 2017), while still

CONTACT Isabel R. Fulcher isabel_fulcher@hms.harvard.edu Department of Global Health and Social Medicine, Harvard Medical School, 641 Hungtington Ave,
Boston, MA 02115.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

restricting a unit’s set of interfering units to be a small set defined
by spatial proximity or network ties, as well as severely limiting
the degree of outcome dependence to facilitate inference. A
separate strand of work has primarily focused on detection of
specific forms of spillover effects in the context of an experi-
mental design in which the intervention assignment process is
known to the analyst (Aronow 2012; Bowers, Fredrickson, and
Panagopoulos 2013; Athey, Eckles, and Imbens 2018). In much
of this work, outcome dependence across units can be left fairly
arbitrary, therefore relaxing (ii), without compromising validity
of randomization tests for spillover effects. Similar methods for
nonexperimental data, such as observational studies, are not
currently available.

Another area of research which has recently received
increased interest in the interference literature concerns the task
of effect decomposition of the spillover effect of an intervention
on an outcome known to spread over a given network into so-
called contagion and infectiousness components (VanderWeele,
Tchetgen Tchetgen, and Halloran 2012). The first quantifies the
extent to which an intervention received by one person may
prevent another person’s outcome from occurring because the
intervention prevents the first from experiencing the outcome
and thus somehow from transmitting it to another (Vander-
Weele, Tchetgen Tchetgen, and Halloran 2012; Ogburn et al.
2014; Shpitser, Tchetgen Tchetgen, and Andrews 2017). The sec-
ond quantifies the extent to which even if a person experiences
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the outcome, the intervention may impair his or her ability
to transmit the outcome to another. A prominent example of
such queries corresponds to vaccine studies for an infectious
disease (VanderWeele, Tchetgen Tchetgen, and Halloran 2012;
Ogburn et al. 2014; Shpitser, Tchetgen Tchetgen, and Andrews
2017). In this latter strand of work, it is typically assumed
that interference and outcome dependence occur only within
nonoverlapping groups, and that the number of independent
groups is large.

We refer the reader to Tchetgen Tchetgen and VanderWeele
(2012), VanderWeele, Tchetgen Tchetgen, and Halloran (2014),
and Halloran and Hudgens (2016) for extensive overviews of the
fast growing literature on interference and spillover effects.

An important gap remains in the current literature: no gen-
eral approach exists which can be used to facilitate the evalu-
ation of spillover effects on a single network in settings where
treatment outcome relationships are confounded, unit interfer-
ence may be due not only to immediate network ties but also
from indirect connections (friend of a friend, and so on) in
a network, and nontrivial dependence between outcomes may
exist for units connected via long range indirect relationships in
a network.

The current article aims to fill this important gap in the
literature. Specifically, in this article, the outcome experienced
by a given unit could in principle be influenced by an interven-
tion received by a unit with whom no direct network tie exists,
provided there is a path of connected units linking the two.
Furthermore, the approach developed in this article respects
a fundamental feature of outcomes measured on a network,
by allowing for an association of outcomes for any two units
connected by a path on the network. Although network causal
effects are shown to in principle be nonparametrically identified
by a network version of the g-formula (Robins 1986) under
standard assumptions of consistency and no unmeasured con-
founding adapted to the network setting, statistical inference is
however intractable given the single realization of data observed
on the network and lack of partial interference assumption.
Nonetheless, progress is made by an assumption that network
data admit a representation as a graphical model corresponding
to chain graphs (Lauritzen and Richardson 2002). This graphical
representation of network data generalizes that introduced in
Shpitser, Tchetgen Tchetgen, and Andrews (2017) for the pur-
pose of interrogating causal effects under partial interference
and it is particularly fruitful in the setting of a single network
as it implies, under fairly mild positivity conditions, that the
outcomes observed on the network may be viewed as a sin-
gle realization of a certain conditional Markov random field
(MRF); and that the set of confounders likewise constitute a
single realization of an MRF. By leveraging the local Markov
property associated with the resulting chain graph which we
encode in nonlattice versions of Besag’s auto-models (Besag
1974), we develop a certain Gibbs sampling algorithm which
we call the auto-g-computation algorithm as a general approach
to evaluate network effects such as direct and spillover effects.
Furthermore, we describe corresponding statistical techniques
to draw inference which appropriately account for interfer-
ence and complex outcome dependence across the network.
Auto-g-computation may be viewed as a network generalization
of Robins’ well-known g-computation algorithm previously

described for causal inference under no-interference and inde-
pendent and identically distributed (iid) data (Robins 1986).
We also note that while MRFs have a longstanding history
as models for network data starting with Besag (1974) (see
also Kolaczyk and Csárdi (2014) for a textbook treatment and
summary of this literature), a general chain graph representation
of network data appears not to have previously been used in
the context of interference and this article appears to be the
first instance of their use in conjunction with g-computation in
a formal counterfactual framework for inferring causal effects
from observational network data.

Ogburn et al. (2017) recently proposed in parallel to this
work, an alternative approach for evaluating causal effects on
a single realization of a network, which is based on tradi-
tional causal directed acyclic graphs (DAGs) and their alge-
braic representation as causal structural equation models. As
discussed in Lauritzen and Richardson (2002), such alternative
representation as a DAG will generally be incompatible with
our chain graph representation and therefore the respective
contribution of these two manuscripts present little to no over-
lap. Specifically, similar to our setting, Ogburn et al. (2017)
allowed for a single realization of the network which is fully
observed; however, they assume (i) an underlying nonparamet-
ric structural equation model with independent error terms
(Pearl 2000) compatible with a certain DAG generated the net-
work data. This assumption implies a large number of cross-
world counterfactual independences which are largely unneces-
sary for identification but inherent to their model (Richardson
and Robins 2013). Furthermore, (ii) their approach precludes
any dependence between outcomes not directly connected on
the network nor does it allow for interference between units
which are not network ties. Finally, (iii) inferences are primarily
based on an assumption that outcome errors for the network
are conditionally independent given baseline characteristics.
Our proposed approach does not require any of assumptions
(i)–(iii).

The remainder of this article is organized as follows. In
Section 2, we present notation used throughout. In Section 3,
we review notions of direct and spillover effects which arise in
the presence of interference. In this same section, we review
sufficient conditions for identification of network causal effects
by a network version of the g-formula, assuming the knowledge
of the observed data distribution, or (alternatively) infinitely
many realizations from this distribution. We then argue that the
network g-formula cannot be empirically identified nonpara-
metrically in more realistic settings where a single realization of
the network is observed. To remedy this difficulty, we leverage
information encoding network ties (which we assume is both
available and accurate) to obtain a chain graph representation
of observed variables for units of the network. This chain graph
is then shown to induce conditional independences which allow
versions of coding and pseudo maximum likelihood estimators
due to Besag (1974) to be used to make inferences about the
parameters of the joint distribution of the observed data sample.
These estimators are described in Section 4, for parametric
auto-models of Besag (1974). The resulting parameterization
is then used to make inferences about network causal effects
via a specialized Gibbs sampling algorithm we have called the
auto-g-computation algorithm, also described in Section 4. In
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Section 5, we describe results from a simulation study evaluating
the performance of the proposed approach. A data application
illustrating auto-g-computation of direct and spillover effects of
past incarceration on HIV/STI/HCV infection in a network of
sexual and injection drug use partners is reported in Section 6.
Finally, in Section 7, we offer some concluding remarks and
directions for future research.

2. Notation and Definitions

2.1. Preliminaries

Suppose one has observed data on a population of N inter-
connected units. Specifically, for each i ∈ {1, . . . , N} one has
observed (Ai, Yi), where Ai denotes the binary treatment or
intervention received by unit i, and Yi is the corresponding
outcome. Let A ≡ (A1, . . . , AN) denote the vector of treatments
all individuals received, which takes values in the set {0, 1}N ,
and A−j ≡ (A1, . . . , AN)\Aj ≡ (A1, . . . , Aj−1, Aj+1, . . . , AN)

denote the N − 1 subvector of A with the jth entry
deleted. In general, for any vector X = (Xi, . . . , XN) , X−j =
(X1, . . . , XN)\Xj = (X1, . . . , Xj−1, Xj+1, . . . , XN). Likewise if
Xi = (X1,i, . . . , Xp,i) is a vector with p components, X\s,i =
(X1,i, . . . , Xs−1,i, Xs+1,i, . . . , Xp,i). Following Sobel (2006) and
Hudgens and Halloran (2008), we refer to A as an intervention,
treatment or allocation program, to distinguish it from the
individual treatment Ai. Furthermore, for n = 1, 2, . . . , we
defineA(n) as the set of vectors of possible treatment allocations
of length n; for instance A(2) ≡ {(0, 0), (0, 1), (1, 0), (1, 1)} .
Therefore, A takes one of 2N possible values in A(N), while A−j
takes values in A(N − 1) for all j.

As standard in causal inference, we assume the existence of
counterfactual (potential outcome) data Y(·) = {Yi(a) : a ∈
A(N)} where Y(a) = {Y1 (a) , . . . , YN(a)}, Yi (a) is unit i’s
response under treatment allocation a; and that the observed
outcome Yi for unit i is equal to his counterfactual outcome
Yi (A) under the realized treatment allocation A; more formally,
we assume the network version of the consistency assumption:

Y (A) = Y a.e. (1)

Notation for the random variable Yi(a) makes explicit the possi-
bility of the potential outcome for unit i depending on treatment
values of other units, that is the possibility of interference. The
standard no-interference assumption (Cox 1958; Rubin 1974)
made in the causal inference literature, namely that for all j
if a and a′ are such that aj = a′

j then Yj (a) = Yj
(
a′)

a.e., implies that the counterfactual outcomes for individual
j can be written in a simplified form as

{
Yj (a) : a ∈ {0, 1}}.

The partial interference assumption (Sobel 2006; Hudgens and
Halloran 2008; Tchetgen Tchetgen and VanderWeele 2012),
which weakens the no-interference assumption, assumes that
the N units can be partitioned into K blocks of units, such that
interference may occur within a block but not between blocks.
Under partial interference, Yi (a) = Yi

(
a′) a.s. only if aj = a′

j
for all j in the same block as unit i. The assumption of par-
tial interference is particularly appropriate when the observed
blocks are well separated by space or time such as in certain
group randomized studies in the social sciences, or community-
randomized vaccine trials. Aronow and Samii (2017) relaxed the
requirement of nonoverlapping blocks, and allowed for more

complex patterns of interference across the network. Obtaining
identification required a priori knowledge of the “interference
set,” that is for each unit i, the knowledge of the set of units{

j : Yi (a) �= Yi
(
a′) a.s. if ak = a′

k and aj �= a′
j for all k �= j

}
. In

addition, the number of units interfering with any given unit had
to be negligible relative to the size of the network. See Liu, Hud-
gens, and Becker-Dreps (2016) for closely related assumptions.

In contrast to existing approaches, our approach allows full
rather than partial interference in settings where treatments are
also not necessarily randomly assigned. The assumptions that
we make can be separated into two parts: network versions of
standard causal inference assumptions, given below, and inde-
pendence restrictions placed on the observed data distribution
which can be described by a graphical model, described in more
detail later.

We assume that for each a ∈ A(N) the vector of potential
outcomes Y(a) is a single realization of a random field. In
addition to treatment and outcome data, we suppose that one
has also observed a realization of a (multivariate) random field
L = (L1, . . . , LN) , where Li denotes pretreatment covariates
for unit i. For identification purposes, we take advantage of
a network version of the conditional ignorability assumption
about treatment allocation which is analogous to the standard
assumption often made in causal inference settings; specifically,
we assume that:

A ⊥⊥ Y(a)|L for all a ∈ A(N). (2)

This assumption basically states that all relevant information
used in generating the treatment allocation whether by a
researcher in an experiment or by “nature” in an observational
setting, is contained in L. Network ignorability can be enforced
in an experimental design where treatment allocation is under
the researcher’s control. On the other hand, the assumption
cannot be ensured to hold in an observational study since
treatment allocation is no longer under experimental control,
in which case credibility of the assumption depends crucially on
subject matter grounds. Equation (2) simplifies to the standard
assumption of no unmeasured confounding in the case of no
interference and iid unit data, in which case Ai ⊥⊥ Yi (a) |Li
for all a ∈ {0, 1}. Finally, we make the following positivity
assumption at the network treatment allocation level:

f (a|L) > σ > 0 a.e. for all a ∈ A(N). (3)

2.2. Network Causal Effects

We will consider a variety of network causal effects that are
expressed in terms of unit potential outcome expectations
ψi (a) = E (Yi (a)) , i = 1, . . . , N. Let ψi (a−i, ai) =
E (Yi (a−i, ai)) The following definitions are motivated by anal-
ogous definitions for fixed counterfactuals given in Hudgens
and Halloran (2008). The first definition gives the average direct
causal effect for unit i upon changing the unit’s treatment status
from inactive (a = 0) to active (a = 1) while setting the
treatment received by other units to a−i:

DEi (a−i) ≡ ψi (a−i, ai = 1) − ψi (a−i, ai = 0) .

The second definition gives the average spillover (or “indi-
rect”) causal effect experienced by unit i upon setting the unit’s
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treatment inactive, while changing the treatment of other units
from inactive to a−i:

IEi (a−i) ≡ ψi (a−i, ai = 0) − ψi (a−i = 0, ai = 0) .
Similar to Hudgens and Halloran (2008), these effects
can be averaged over a hypothetical allocation regime
πi (a−i; α) indexed by α to obtain allocation-specific unit
average direct and spillover effects DEi (α) = ∑

a−i∈A(N−1)

πi (a−i; α) DEi (a−i) and IEi (α) = ∑
a−i∈A(N−1) πi (a−i; α)

IEi (a−i) , respectively. Note that as π i is indexed by i, we
implicitly allow for hypothetical allocation regimes tailored
to person i’s covariates, along with those of his or her sub-
network, therefore allowing for dynamic hypothetical treatment
allocation regimes. One may further average over the units in
the network to obtain allocation-specific network average direct
and spillover effects DE (α) = N−1 ∑

i DEi (α) and IE (α) =
N−1 ∑

i IEi (α), respectively. These quantities can further be
used to obtain other related network effects such as average
total and overall effects at the unit or network level analogous
to Hudgens and Halloran (2008) and Tchetgen Tchetgen and
VanderWeele (2012).

Identification of these effects follows from identification of
ψi (a) for each i = 1, . . . , N. In fact, under assumptions (1)–(3),
it is straightforward to show that ψi (a) is given by a network
version of Robins’ g-formula: ψi (a) = βi (a) where βi (a) ≡∑

l E (Yi|A = a, L = l) f (l) , f (l) is the density of l, and
∑

may
be interpreted as integral when appropriate.

Although ψi (a) can be expressed as the functional βi (a)
of the observed data law, βi (a) cannot be identified nonpara-
metrically from a single realization (Y, A, L) drawn from this
law without imposing additional assumptions. In the absence of
interference, it is standard to rely on the additional assumption
that (Yi, Ai, Li), i = 1, . . . , N are iid, in which case the above
g-formula reduces to the standard g-formula βi (a) = β (ai) =∑

l E (Yi|Ai = ai, Li = l) f (l) which is nonparametrically iden-
tified (Robins 1986). Since we consider a sample of intercon-
nected units in a network, the iid assumption is unrealistic.
Below, we consider assumptions on the observed data law that
are much weaker, but still allow inferences about network effects
to be made.

We first introduce a convenient representation of
E (Yi|A = a, L = l), and describe a corresponding Gibbs
sampling algorithm which could in principle be used
to compute the network g-formula under the unrealistic
assumption that the observed data law is known. First, note that
βi (a) = ∑

y,l yif
(
y|A = a, L = l

)
f (l) .

Suppose that one has available the conditional densities
(also referred to as Gibbs factors) f

(
Yi|Y−i = y−i, a, l

)
and

f
(
Li|L−i= l−i

)
, i = 1, . . . , N, and that it is straightforward

to sample from these densities. Then, evaluation of the above
formula for βi (a) can be achieved with the following Gibbs
sampling algorithm.

Gibbs Sampler I:

for m = 0, let
(

L(0), Y(0)
)

denote initial values ;

for m = 0, . . . , M
let i = (m mod N) + 1;

draw L(m+1)
i from f

(
Li|L(m)

−i

)
and Y(m+1)

i from

f
(

Yi|Y(m)
−i , a, L(m)

)
;

let L(m+1)
−i = L(m)

−i and Y(m+1)
−i = Y(m)

−i .

The sequence
(
L(0), Y(0)

)
,
(
L(1), Y(1)

)
, . . . ,

(
L(m), Y(m)

)
forms a

Markov chain, which under appropriate regularity conditions
converges to the stationary distribution f (Y|a, L) × f (L) (Liu
2008). Specifically, we assume m∗ is an integer larger than the
number of transitions necessary for the appropriate Markov
chain to reach equilibrium from the starting state. Thus, for
sufficiently large K, we take M = m∗ + K such that,

βi (a) ≈ K−1
K∑

k=0
Y(m∗+k)

i .

Thus, if Gibbs factors f
(
Yi|Y−i = y−i, a, l

)
and f

(
Li|L−i= l−i

)
are available for every i, all networks causal effects can be
computed. This approach to evaluating the g-formula is the
network analogue of Monte Carlo sampling approaches to eval-
uating functionals arising from the g-computation algorithm
in the sequentially ignorable model (see, e.g., Westreich et al.
2012). Unfortunately these factors are not identified from a
single realization of the observed data law, without additional
assumptions. In the following section, we describe additional
assumptions which will imply identification.

3. A Graphical Statistical Model for Network Data

To motivate our approach, we introduce a representation for
network data proposed by Shpitser, Tchetgen Tchetgen, and
Andrews (2017) and based on chain graphs. A chain graph (CG)
(Lauritzen 1996) is a mixed graph containing undirected (−)
and directed (→) edges with the property that it is impossible to
add orientations to undirected edges in such a way as to create a
directed cycle. A chain graph without undirected edges is called
a DAG.

A statistical model associated with a CG G with a vertex
set O is a set of densities that obey the following two level
factorization:

p(O) =
∏

B∈B(G)

p(B | paG(B)), (4)

where B(G) is the partition of vertices in G into blocks, or sets
of connected components via undirected edges, and paG(B) is
the set {W : W → B ∈ B exists in G}. This outer factorization
resembles the Markov factorization of DAG models. Further-
more, each factor p(B | paG(B)) obeys the following inner
factorization, which is a clique factorization for a conditional
Markov random field:

p(B | paG(B)) = 1
Z(paG(B))

∏
C∈C(Ga

B∪paG (B))
);C �⊆paG(B)

φC(C),

(5)

where Z(paG(B)) is a normalizing function which ensures a
valid conditional density, C(G) is a set of maximal pairwise con-
nected components (cliques) in an undirected graphG, φC(C) is
a mapping from values of C to real numbers, andGa

B∪paG(B)) is an
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undirected graph with vertices B∪paG(B) and an edge between
any pair in paG(B) and any pair in B ∪ paG(B) adjacent in G.

A density p(O) that obeys the two level factorization given by
(4) and (5) with respect to a CG G is said to be Markov relative
to G. This factorization implies a number of Markov properties
relating conditional independences in p(O) and missing edges
in G. Conversely, these Markov properties imply the factoriza-
tion under an appropriate version of the Hammersley–Clifford
theorem, which does not hold for all densities, but does hold
for wide classes of densities, which includes positive densities
(Hammersley and Clifford 1971). Special cases of these Markov
properties are described further below. Details can be found in
Lauritzen (1996).

3.1. A Chain Graph Representation of Network Data

Observed data distributions entailed by causal models of a DAG,
such as nonparametric structural equations with independent
errors, do not necessarily yield a good representation of network
data. This is because DAGs impose an ordering on variables
that is natural in temporally ordered longitudinal studies but
not necessarily in network settings. As we now show the Markov
property associated with CGs accommodates both dependences
associated with causal or temporal orderings of variables, but
also symmetric dependences induced by the network.

Let E denote the set of neighboring pairs of units in the
network; that is, (i, j) ∈ E only if units i and j are directly
connected on the network. We represent data O drawn from a
joint distribution associated with a network with neighboring
pairs E as a CG GE in which each variable corresponds to a
vertex, and directed and undirected edges of GE are defined as
follows. For each pair of units (i, j) ∈ E , variables Li and Lj are
connected by an undirected edge in GE . We use an undirected
edge to represent the fact that Li and Lj are associated, and
cannot be ordered temporally or causally as they are contem-
poraneous. In addition, this association is not in general due
to unobserved common causes (Shpitser, Tchetgen Tchetgen,
and Andrews 2017). Vertices for Ai and Aj, and Yi and Yj are
likewise connected by an undirected edge in GE if and only
if (i, j) ∈ E . Furthermore, for each (i, j) ∈ E , a directed edge
connects Li to both Ai and Aj encoding the fact that covariates
of a given unit may be direct causes of the unit’s treatment
but also of the neighbor treatments, that is, Li → {

Ai, Aj
}

;
edges Li → {

Yi, Yj
}

and Ai → {
Yi, Yj

}
should be added to

the chain graph for a similar reason. As an illustration, the
CG in Figure 1 corresponds to a three-unit network where
E = {(1, 2) , (2, 3)}.

We will assume the observed data distribution for O associ-
ated with our network causal model is Markov relative to the
CG constructed from unit connections in a network via the
above two level factorization (Lauritzen 1996). This implies the
observed data distribution obeys certain conditional indepen-
dence restrictions that one might intuitively expect to hold in a
network, and which serve as the basis of the proposed approach.
Let Ni denote the set of neighbors of unit i, that is, Ni ={

j :
(
i, j

) ∈ E
}

, and let Oi = {
Oj, j ∈ Ni

}
denote data observed

on all neighbors of unit i. Given a CG GE with associated neigh-
boring pairs E , the following conditional independences follow
by the global Markov property associated with CGs (Lauritzen
1996):

Figure 1. Chain graph representation of data from a network of three units.

Yi ⊥⊥ {Yk, Ak, Lk}|(Ai, Li,Oi) for all i and k, k �= i; (6)

Li ⊥⊥ L−i \ Oi|L−i ∩ Oi for all i and k /∈ Ni, k �= i. (7)

In words, Equation (6) states that the outcome of a given unit can
be screened-off (i.e., made independent) from the variables of all
nonneighboring units by conditioning on the unit’s treatment
and covariates as well as on all data observed on its neighboring
units, where the neighborhood structure is determined by GE .
That is, (Ai, Li,Oi) is the Markov blanket of Yi in CG GE . This
assumption, coupled with a sparse network structure, leads to
extensive dimension reduction of the model specification for
Y|A, L. In particular, the conditional density of Yi| {O\Yi} only
depends on (Ai, Li) and on neighbors’ data Oi. Similarly, L−i ∩
Oi is the Markov blanket of Li in CG GE .

3.2. Conditional Auto-models

Suppose that instead of (3), the following stronger positivity
condition holds:

P (O = o) > 0, for all possible values o. (8)

Since (6) holds for the conditional law of Y given A, L, it
lies in the conditional MRF (CMRF) model associated with the
induced undirected graph Ga

E . In addition, since (8) holds, the
conditional MRF version of the Hammersley–Clifford theorem
and (6) imply the following version of the clique factorization
in (5),

f
(
y|a, l

) =
(

1
κ (a, l)

)
exp

{
U

(
y; a, l

)}
,

where κ (a, l) = ∑
y exp

{
U

(
y; a, l

)}
, and U

(
y; a, l

)
is a con-

ditional energy function which can be decomposed into a sum
of terms called conditional clique potentials, with a term for
every maximal clique in the graphGa

E (Besag 1974). Conditional
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clique potentials offer a natural way to specify a CMRF using
only terms that depend on a small set of variables. Specifically,

f
(
Yi = yi|Y−i = y−i, a, l

)
= f

(
Yi = yi|Y−i = y−i,

{
aj,lj : j ∈ Ni

} )
= exp

{∑
c∈Ci Uc

(
y; a, l

)}∑
y′:y′−i=y−i exp

{∑
c∈Ci Uc

(
y′; a, l

)} , (9)

where Ci are all maximal cliques of Ga
E that involve Yi.

Gibbs densities specified as in (9) is a rich class of densi-
ties, and are often regularized in practice by setting to zero
conditional clique potentials for cliques of size greater than a
prespecified cut-off. This type of regularization corresponds to
setting higher order interactions terms to zero in log-linear
models. For instance, closely following Besag (1974), one may
introduce conditions (a) only cliques c ∈ C of size one or two
have nonzero potential functions Uc, and (b) the conditional
probabilities in (9) have an exponential family form. Under
these additional conditions, given a, l, the energy function takes
the form

U
(
y; a, l

) =
∑
i∈GE

yiGi
(
yi; a, l

) +
∑

{i,j}∈E
yiyjθij (a, l) ,

for some functions Gi (·; a, l) and coefficients θij (a, l) . Note
that to be consistent with local Markov conditions (6)
and (7), Gi (·; a, l) can only depend on

{
(as, ls) : s ∈ Nj

}
,

while because of symmetry θij (a, l) can depend at most on{
(as, ls) : s ∈ Nj ∩ Ni

}
. Following Besag (1974), we call the

resulting class of models conditional auto-models.
Conditions (7) and (8) imply that L is an MRF; standard

Hammersley–Clifford theorem further implies that the joint
density of L can be written as

f (l) =
(

1
ν

)
exp {W (l)} ,

where ν = ∑
l′ exp

{
W

(
l′
)}

, and W (l) is an energy function
which can be decomposed as a sum over cliques in the induced
undirected graph (GE )L. Analogous to the conditional auto-
model described above, we restrict attention to densities of L of
the form:

W (L) =
∑
i∈GE

⎧⎨⎩
p∑

k=1
Lk,iHk,i

(
Lk,i

) +
∑
k�=s

ρk,s,iLk,iLs,i

⎫⎬⎭
+

∑
{i,j}∈E

p∑
k=1

p∑
s=1

ωk,s,i,jLk,iLs,j, (10)

for some functions Hk,i
(
Lk,i

)
and coefficients ρk,s,i, ωk,s,i,j. Note

that ρk,s,i encodes the association between covariate Lk,i and
covariate Ls,i observed on unit i, while ωk,s,i,j captures the associ-
ation between Lk,i observed on unit i and Ls,j observed on unit j.

3.3. Parametric Specifications of Auto-models

A prominent auto-regression model for binary outcomes is the
so-called autologistic regression first proposed by Besag (1974).
Note that as (a, l) is likely to be high dimensional, identification
and inference about Gi and θij requires one to further restrict
heterogeneity by specifying simple low dimensional parametric
models for these functions of the form:

Gi
(
yi; a, l

) = G̃i (a, l) = log
Pr (Yi = 1|a, l, Y−i = 0)

Pr (Yi = 0|a, l, Y−i = 0)

= β0 + β1ai + β ′
2li + β3

∑
j∈Ni

wa
ijaj + β ′

4
∑
j∈Ni

wl
ijlj;

θij = wy
ijθ ,

where wa
ij, wl

ij, wy
ij are user specified weights which may depend

on network features associated with units i and j, with
∑

j wa
ij =∑

j wl
ij = ∑

j wy
ij = 1; for example, wa

ij = 1/card (Ni) standard-
izes the regression coefficient by the size of a unit’s neighbor-
hood. We assume model parameters τ = (

β0, β1, β ′
2, β3, β ′

4, θ
)

are shared across units in a network. In addition, network
features can be incorporated into the auto-models as model
parameters, which may be desirable in settings where network
features are confounders for the relationship between exposure
and outcome. For example, one could further adjust for a unit’s
degree (i.e., number of ties).

For a continuous outcome, an auto-Gaussian model may be
specified as followed:

Gi
(
yi; a, l

) = −
(

1
2σ 2

y

)
(yi − 2μy,i (a, l));

μy,i (a, l) = β0 + β1ai + β ′
2li + β3

∑
j∈Ni

wa
ijaj + β ′

4
∑
j∈Ni

wl
ijlj;

θij = wy
ijθ ,

where μy,i (a, l) = E (Yi|a, l, Y−i = 0), and σ 2
y =

var (Yi|a, l, Y−i = 0). Similarly, model parameters τY =(
β0, β1, β ′

2, β3, β ′
4, σ 2

y , θ
)

are shared across units in the network.
Other auto-models within the exponential family can likewise
be conditionally specified, for example, the auto-Poisson model.

Auto-model density of L is specified similarly. For example,
fix parameters in (10)

ρk,s,i = ρk,s,
ωk,s,i,j = ω̃k,svi,j,

where vi,j is a user-specified weight which satisfies
∑

j vi,j = 1.
For Lk binary, one might take

Hk,i
(
Lk,i; τk

) = τk = log
Pr

(
Lk,i = 1|L\k,i = 0, L−i = 0

)
Pr

(
Lk,i = 0|L\k,i = 0, L−i = 0

) ,

corresponding to a logistic auto-model for Lk,i|L\k,i = 0, L−i =
0, while for continuous Lk

Hk,i
(
Lk,i; τk = (

σ 2
k , μk

)) = −
(

1
2σ 2

k

)
(Lk,i − 2μk),
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corresponding to a Gaussian auto-model for Lk,i|L\k,i =
0, L−i = 0. As before, model parameters τL = (τ ′

1, . . . , τ ′
p) are

shared across units in the network.

3.4. Coding Estimators of Auto-models

Suppose that one has specified auto-models for Y and L as
in the previous section with unknown parameters τY and τL,
respectively. To estimate these parameters, one could in prin-
ciple attempt to maximize the corresponding joint likelihood
function. However, such task is well-known to be computation-
ally daunting as it requires a normalization step which involves
evaluating a high dimensional sum or integral which, outside
relatively simple auto-Gaussian models is generally not avail-
able in closed form. For example, to evaluate the conditional
likelihood of Y|A, L for binary Y requires evaluating a sum of
2N terms to compute κ (A, L) . Fortunately, less computationally
intensive strategies for estimating auto-models exist including
pseudo-likelihood (PL) estimation and so called-coding estima-
tors (Besag 1974), which may be adopted here. We first consider
coding-type estimators, mainly because unlike PL estimation,
standard asymptotic theory applies. To describe these estimators
in more detail requires additional definitions.

We define a stable set or independent set on GE as the set of
nodes, S (GE ), such that

(i, j) /∈ E ∀(i, j) ∈ S (GE ) .

That is, a stable set is a set of nodes with the property that no two
nodes in the set have an edge connecting them in the network.
The size of a stable set is the number of units it contains.
A maximal stable set is a stable set such that no unit in GE
can be added without violating the independence condition. A
maximum stable set Smax (GE ) is a maximal stable set of largest
possible size for GE . This size is called the stable number or
independence number of GE , which we denote n1,N = n1 (GE ).
A maximum stable set is not necessarily unique in a given
graph, and finding one such set and enumerating them all is
challenging but a well-studied problem of computer science.
In fact, finding a maximum stable set is a well-known NP-
complete problem. Nevertheless, both exact and approximate
algorithms exist that are computationally more efficient than
an exhaustive search. Exact algorithms which identify all max-
imum stable sets were described in Robson (1986), Makino
and Uno (2004), and Fomin, Grandoni, and Kratsch (2009).
Unfortunately, exact algorithms for finding maximum stable
sets quickly become computationally prohibitive with moderate
to large networks. In fact, the maximum stable set problem is
known not to have an efficient approximation algorithm unless
P = NP (Zuckerman 2006). A practical approach we take in
this article is to simply use an enumeration algorithm that
lists a collection of maximal stable sets (Myrvold and Fowler
2013), and pick the largest of the maximal sets found. Let
�1 = {Smax (GE ) : card (Smax (GE )) = n1 (GE )} denote the
collection of all maximum (or largest identified maximal) stable
sets for GE .

The Markov property associated with GE implies that out-
comes of units within such sets are mutually conditionally inde-
pendent given their Markov blankets. This implies the (partial)
conditional likelihood function which only involves units in

the stable set factorizes, suggesting that tools from maximum
likelihood estimation may apply. In the Appendix, we establish
that this is in fact the case, in the sense that under certain
regularity conditions, coding maximum likelihood estimators of
τ based on maximum (or largest identified maximal) stable sets
are consistent and asymptotically normal (CAN). Consider the
coding likelihood functions for τY and τL based on a stable set
Smax (GE ) ∈ �1:

CLY (τY) =
∏

i∈Smax(GE )

LY ,Smax(GE ),i (τY)

=
∏

i∈Smax(GE )

f (Yi|Oi, Ai, Li; τY) ; (11)

CLL (τL) =
∏

i∈Smax(GE )

LL,Smax(GE ),i (τL)

=
∏

i∈Smax(GE )

f
(
Li|

{
Lj : j ∈ Ni

}
; τL

)
. (12)

The estimators τ̂Y = arg maxτY log CLY (τY) and τ̂L =
arg maxτL log CLL (τL) are analogous to Besag’s coding maxi-
mum likelihood estimators. Consider a network asymptotic the-
ory according to which {GEN : N} is a sequence of chain graphs
as N → ∞, with vertices (AE , LE , YE ) that follow correctly
specified auto-models with unknown parameters (τY , τL), and
with edges defined according to a sequence of networks EN ,
N = 1, 2, . . . of increasing size. We establish the following result
in the Appendix.

Result 1: Suppose that n1,N → ∞ as N → ∞ then under
conditions 1–6 given in the Appendix,

τ̂L −→
N−→∞ τ in probability;̂τY −→

N−→∞ τ in probability.
√n1,N�

1/2
n1,N (̂τL − τL) −→

N−→∞ N (0, I) ;
√n1,N�

1/2
n1,N (̂τY − τY) −→

N−→∞ N (0, I) ;

�n1,N = 1
n1,N

∑
i∈Smax

(
GEN

)
{

∂ log CLL,Smax
(
GEN

)
,i (τL)

∂τL

}⊗2

,

�n1,N = 1
n1,N

∑
i∈Smax

(
GEN

)
{

∂ log CLY ,Smax
(
GEN

)
,i (τY)

∂τY

}⊗2

.

Note that by the information equality, �n1,N and �n1,N can be
replaced by the standardized (by n1,N) negative second deriva-
tive matrix of corresponding coding log-likelihood functions.
Note also that condition n1,N → ∞ as N → ∞ essentially
rules out the presence of an ever-growing hub on the network
as it expands with N, thus ensuring that there is no connected
set of units in which majority of connections are concentrated
asymptotically. Suppose that each unit on a network of size N
is connected to no more than Cmax < N, then according to
Brooks’ Theorem, the stable number n1,N satisfies the inequali-
ties (Brooks 1941):

N
Cmax + 1

≤ n1,N ≤ N.

This implies that in a network of bounded degree, n1,N = O (N)

is guaranteed to be of the same order as the size of the network;
however n1,N may grow at substantially slower rates (n1,N =
o(N)) if Cmax is unbounded.
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3.5. PL Estimation

Note that because Li is likely multivariate, further
computational simplification can be achieved by replacing
f
(
Li|

{
Lj : j ∈ Ni

}
; τL

)
with the PL function

p∏
s=1

f
(
Ls,i|L\s,i,

{
Lj : j ∈ Ni

}
; τL

)
in Equation (12). This substitution is computationally more
efficient as it obviates the need to evaluate a multivariate integral
to normalize the joint law of Li. Let τ̃ denote the estimator which
maximizes the log of the resulting modified coding likelihood
function L∗

L,Smax(GE ),i (τL) . It is straightforward using the proof
of Result 1 to establish that its covariance may be approximated
by the sandwich formula �−1

L,n1,N
�L,n1,N �−1

L,n1,N
(Guyon 1995),

where

�L,n1,N = 1
n1,N

∑
i∈Smax(GE )

{
∂ logL∗

L,Smax(GE ),i (τL)

∂τL

}⊗2

,

�L,n1,N = 1
n1,N

∑
i∈Smax(GE )

{
∂2 logL∗

L,Smax(GE ),i (τL)

∂τL∂τT
L

}
.

As later illustrated in extensive simulation studies, coding
estimators can be inefficient, since the partial conditional like-
lihood function associated with coding estimators disregards
contributions of units i �∈ Smax (GE ) . Substantial information
may be recovered by combining multiple coding estimators
each obtained from a separate approximate maximum stable
set, however accounting for dependence between the different
estimators can be challenging.

PL estimation offers a simple alternative approach which is
potentially more efficient than either approach described above.
PL estimators maximize the log-PLs

log {PLY (τY)} =
∑
i∈GE

log f (Yi|Oi, Ai, Li; τY) ; (13)

log {PLL (τL)} =
∑
i∈GE

log f
(
Lk,i|

{
Ls,i : s ∈ {1, . . . , p} \ k

}
,

(14){
Ls,j : s ∈ {1, . . . , p}, j ∈ Ni

}
; τL

)
. (15)

Denote corresponding estimators τ̌Y and τ̌L, which are shown
to be consistent in the Appendix. There however is generally no
guarantee that their asymptotic distribution follows a Gaussian
distribution due to complex dependence between units on the
network prohibiting application of the central limit theorem. As
a consequence, for inference, we recommend using the paramet-
ric bootstrap, whereby algorithm Gibbs sampler I of Section 2.2
may be used to generate multiple bootstrap samples from the
observed data likelihood evaluated at

(
τ̌Y , τ̌L

)
, which in turn

can be used to obtain a bootstrap distribution for
(
τ̌Y , τ̌L

)
and

corresponding inferences such as bootstrap quantile confidence
intervals.

4. Auto-G-Computation

We now return to the main goal of the article, which is to
obtain valid inferences about βi (a) . The auto-G-computation
algorithm entails evaluating

β̂i (a) ≈ K−1
K∑

k=0
Ŷ(m∗+k)

i ,

where Ŷ(m)
i are generated by Gibbs Sampler I algorithm under

posited auto-models with estimated parameters
(
τ̂Y , τ̂L

)
. An

analogous estimator β̆i (a) can be obtained using
(
τ̌Y , τ̌L

)
instead of

(
τ̂Y , τ̂L

)
. In either case, the parametric bootstrap

may be used in conjunction with Gibbs Sampler I to generate
the corresponding bootstrap distribution of estimators of βi (a)
conditional on either β̂i (a) or β̆i (a). Alternatively, a less com-
putationally intensive approach first generates iid samples τ

(j)
Y

and τ
(j)
L , j = 1, . . . , J from N

(
τ̂Y , �̂n1,N

)
and N

(
τ̂L, �̂n1,N

)
,

respectively, conditional on the observed data, where �̂n1,N =
�n1,N (̂τL) and �̂n1,N = �n1,N (̂τY) estimate �n1,N and �n1,N .
Next, one computes corresponding estimators β̂

(j)
i (a) based

on simulated data generated using Gibbs Sampler I algorithm
under τ

(j)
Y and τ

(j)
L , j = 1, . . . , J. The empirical distribution of{

β̂
(j)
i (a) : j

}
may be used to obtain standard errors for β̂i (a),

and corresponding Wald type or quantile-based confidence
intervals for direct and spillover causal effects.

5. Simulation Study

We performed an extensive simulation study to evaluate the
performance of the proposed methods on networks of vary-
ing density and size. Specifically, we investigated the prop-
erties of the coding-type and PL estimators of unknown
parameters τY and τL indexing the joint observed data
likelihood. Additionally, we evaluated the performance of
proposed estimators of the network counterfactual mean
β(α) = N−1 ∑N

i=1
∑

a−i∈A(N) πi (a−i; α) E (Yi (a)) , as well
as for the direct effect DE(α), and the spillover effect IE(α),
where α is a specified treatment allocation law described
below.

We simulated three networks of size 800 with varying den-
sities: low (each node has either 2, 3, or 4 neighbors), medium
(each node has either 5, 6, or 7 neighbors), and high (each node
has either 8, 9, or 10 neighbors). For reference, a depiction of the
low density network of size 800 is given in Figure 2. Additionally,
we simulated low density networks of size 200, 400, and 1000.
The network graphs were all simulated in Wolfram Mathematica
10 using the RandomGraph function. For each network, we
obtained an (approximate) maximum stable set. The stable sets
for the 800 node networks were of size n1,low = 375, n1,med =
275, n1,high = 224.

For units i = 1, . . . , N, we generated using Gibbs Sampler I a
vector of binary confounders {L1i, L2i, L3i}, a binary treatment
assignment Ai, and a binary outcome Yi from the following
auto-models consistent with the chain graph induced by the
simulated network:
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Figure 2. Network of size 800 with low density.

Pr(L1,i = 1 | L\1,i, {L1,j : j ∈ Ni})
= expit

(
τ1 + ρ12L2,i + ρ13L3,i + ν11

∑
j∈Ni

L1,j

+ ν12
∑
j∈Ni

L2,j + ν13
∑
j∈Ni

L3,j

)
,

Pr(L2,i = 1 | L\2,i, {Lj : j ∈ Ni})
= expit

(
τ2 + ρ12L1,i + ρ23L3,i + ν21

∑
j∈Ni

L1,j

+ ν22
∑
j∈Ni

L2,j + ν23
∑
j∈Ni

L3,j

)
,

Pr(L3,i = 1 || L\3,i, {Lj : j ∈ Ni})
= expit

(
τ3 + ρ13L1,i + ρ23L2,i + ν31

∑
j∈Ni

L1,j

+ ν32
∑
j∈Ni

L2,j + ν33
∑
j∈Ni

L3,j

)

Pr(Ai = 1 | Li, {Aj, Lj : j ∈ Ni})
= expit

(
γ0 + γ1L1,i + γ2

∑
j∈Ni

L1,j + γ3L2,i,

+ γ4
∑
j∈Ni

L2,j + γ5L3,i + γ6
∑
j∈Ni

L3,j + γ7
∑
j∈Ni

Aj

)

Pr(Yi = 1 | Ai, Li,Oi)

= expit
(

β0 + β1Ai + β2
∑
j∈Ni

Aj + β3L1,i + β4
∑
j∈Ni

L1,j,

+ β5L2,i + β6
∑
j∈Ni

L2,j + β7L3,i + β8
∑
j∈Ni

L3,j + β9
∑
j∈Ni

Yj

)
,

Table 1. True parameter values for simulation study.

Parameter Truth

τL (−1.0, 0.50, −0.50, 0.1, 0.2, 0.1, 0.1, 0, 0, 0.1, 0, 0, 0.1, 0, 0)

τA (−1.00, 0.50, 0.10, 0.20, 0.05, 0.25, −0.08, 0.30)

τY (−0.30, −0.60, −0.20, −0.20, −0.05, −0.10, −0.01, 0.40, 0.01, 0.20)

Table 2. Simulation results of coding based estimators of network causal effects for
networks of size 800 by density.

Truth Bias MC variance Robust variance 95% CI coverage

Low (n1 = 375)

β(α) 0.211 0.001 0.001 0.001 0.945
Spillover −0.166 0.002 0.004 0.004 0.937

Direct −0.179 0.002 0.002 0.002 0.943

Medium (n1 = 275)

β(α) 0.209 0.003 0.001 0.002 0.931
Spillover −0.170 0.007 0.013 0.015 0.925

Direct −0.178 <0.001 0.003 0.003 0.925

High (n1 = 224)

β(α) 0.208 0.004 0.005 0.004 0.937
Spillover −0.171 0.001 0.032 0.027 0.922

Direct −0.177 −0.001 0.004 0.004 0.956

where expit (x) = (1 + exp (−x))−1, τL = {τ1, τ2, τ3, ρ12, ρ13,
ρ23, ν11, ν12, ν13, ν22, ν21, ν23, ν33, ν31, ν32}, τA = {γ0, . . . , γ7},
and τY = {β0, . . . , β9}. We evaluated network average direct
and spillover effects via the Gibbs Sampler I algorithm under
true parameter values τY and τL and a treatment allocation, α

given by a binomial distribution with event probability equal
to 0.7. All parameter values are summarized in Table 1. We
generated S = 1000 simulations of the chain graph for each of
the 4 simulated network structures. For each simulation s, data
were generated by running the Gibbs sampler I algorithm 4000
times with the first 1000 iterations as burn-in. Additionally, we
thinned the chain by retaining every third realization to reduce
autocorrelation.

For each realization of the chain graph, GEN ,s, we estimated
τY via coding-type maximum likelihood estimation and τL via
the modified coding estimator. Both sets of parameters were
also estimated via maximum PL estimation. For each estima-
tor we computed corresponding causal effect estimators, their
standard errors and 95% Wald confidence intervals as outlined
in previous Sections estimation of auto-model parameters was
performed in R using functions optim() and glm() (R
Core Team 2013) network average causal effects were estimated
using Gibbs Sampler I using the agcEffect function in the
autognet R package by plugging in estimates for (τL, τY)

using K = 50 iterations and a burn-in of m∗ = 10 iterations. For
variance estimation of the coding-type estimator, 200 bootstrap
replications were used.

Simulation results for the various density networks of size
800 are summarized in Tables 2 and 3 for the following param-
eters: the network average counterfactual β(α), the network
average direct effect, and the network average spillover effect.
Both coding and PL estimators had small bias in estimating β(α)

regardless of network density (absolute bias <0.01). Coverage of
the coding estimator ranged between 93.1% and 94.5%. Biases
were also small for both spillover and direct effects: the bias
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Table 3. Simulation results of pseudo-likelihood based estimators of network
causal effects for networks of size 800 by density. Confidence intervals for PL
estimators were not calculated as they were shown to have invalid coverage in
simulation studies.

Truth Absolute bias MC variance

Low

β(α) 0.211 0.001 <0.001
Spillover −0.166 0.002 0.002

Direct −0.179 0.002 0.001

Medium

β(α) 0.209 0.003 0.001
Spillover −0.170 0.007 0.005

Direct −0.178 <0.001 0.001

High

β(α) 0.208 0.004 0.001
Spillover −0.171 0.001 0.006

Direct −0.177 −0.001 0.001

slightly increased with network density, but still stayed below
an absolute bias of 0.01. Coverage of coding-based confidence
intervals for direct effects ranged from 92.5% to 95.6%, while
the coverage for spillover effects decreased slightly with network
density from 93.7% to 92.2%. It is important to note that as the
network structure changes with network size and density, the
corresponding estimated parameters likewise vary and therefore
it is not necessarily straightforward to compare performance of
the methodology across network structure. Table 3 gives the MC
variance for the PL estimator which confirms greater efficiency
compared to the coding estimator given the significantly larger
effective sample size used by PL. Appendix Tables 1–3 report
bias and coverage for the network causal effect parameters for
low density networks of size 200, 400, and 1000. Additionally,
Appendix Figures 1 and 2 report bias and coverage for all 25
auto-model parameters in the low-density network of size 800.
As predicted by theory, coding-type and PL estimators exhibit
small bias. Additionally, coding-type estimators had approxi-
mately correct coverage, while PL estimators had coverage sub-
stantially lower than the nominal level for a number of auto-
model parameters. These results confirm the anticipated failure
of PL estimators to be asymptotically Gaussian. Most notably,
the coverage for the outcome auto-model coefficient capturing
dependence on neighbors’ outcomes β9 was 81%, while cover-
age of the coding-type Wald CI for this coefficient was 94%.
Although not shown here, the coverage results for the auto-
model parameters are consistent across all simulations.

We also assessed the performance of auto-g-computation
in small, dense networks and in the presence of missing net-
work edges. For the first, we generated one network of size
100 (n1,100 = 25) and an additional network of size 200
(n1,200 = 57). For the network of size 100, coding estimation
of auto-model parameters in 437 of the 1000 simulated samples
had convergence issues due to the small size of the maximal
independent set. Excluding results with convergence issues, the
causal estimates were biased and did not have correct coverage
(see Appendix Figure 3(a)). The performance for the network
of size 200 was much improved across these endpoints, though
oftentimes the confidence intervals were too wide to be infor-
mative. In both cases, the PL estimator exhibited less bias than
the coding estimator. In the previously described dense network

of size 800, we randomly removed 564 (14%) of edges. The
estimated parameters from the auto-models were unbiased and
had correct coverage (see Appendix Figure 4). However, the
causal estimates for both the coding and PL estimators exhibited
bias, and the coding estimator had coverage slightly below the
nominal level with the estimated spillover effect shifted toward
null (see Appendix Figure 5).

6. Data Application

We consider an application of the auto-g-computation algorithm
to the Networks, Norms, and HIV/STI Risk Among Youth
(NNAHRAY) study to assess the effect of past incarceration
on infection with HIV, STI, or Hepatitis C accounting for the
network structure (Khan et al. 2009). The NNAHRAY study
was conducted in a New York neighborhood with epidemic
HIV and widespread drug use from 2002 to 2005 (Friedman
et al. 2008). Through in-person interviews, information was
collected regarding the respondents’ demographic character-
istics, incarceration history, sexual partnerships and histories,
and past drug use. At the time of the interviews, respondents
were also tested for HIV, gonorrhea, chlamydia, herpes simplex
virus (HSV) 2, hepatitis C virus (HCV), and syphilis. The study
population we consider includes all interviewed persons with
recorded results from their HIV, STI, and HCV tests (n = 8
persons missing) for a total sample size of N = 457 persons.
We assume that HIV/STI/HCV status is missing completely at
random. We defined a network tie (i.e., edge) as a sexual and/or
injection drug use partnership in the past three months if at
least one of the partners reported the relationship. The network
structure is given in Figure 3. The number of partners (i.e.,
neighbors) for each respondent varied from none to 10 resulting
in a maximal independent set of n1 = 274.

We estimated the network-level spillover and direct effect of
past incarceration on infection with HIV, STI, or HCV under
a Bernoulli allocation strategy with treatment probability equal
to 0.50. Past incarceration was defined as any amount of jail
time in the respondents’ history. We accounted for confounding
by Latino/a ethnicity, age, education, and past illicit drug use.
The same models and estimation procedure detailed in the
simulation section were utilized; note that νij where i �= j
were assumed to be 0. For comparison, the auto-model param-
eters were estimated using the coding-type and PL estimators.
Network average spillover and direct effects were restricted to
persons with at least one network tie.

Table 4 gives the outcome auto-model parameter point esti-
mates for the coding and PL estimators with 95% confidence
intervals for the coding estimators excluding the covariate
terms. Due to scaling by number of network ties, the outcome
and exposure influence of network ties can be interpreted as the
effect of average covariate value among network ties. Individuals
who experienced prior incarceration had 2.12 [95% CI: 1.07–
4.21] times the odds of infection with HIV/STI/HCV compared
to those without prior incarceration. However, the incarceration
status of network ties was not significantly associated with a
person’s risk of HIV/STI/HCV (OR = 1.21 [95% CI: 0.52–2.84])
conditional on the neighbors’ outcomes. Individual’s with a
greater proportion of their ties infected with HIV, STI, and/or
HCV were much more likely to be infected with HIV, STI,
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Figure 3. Network graph from the NNAHRAY data (N = 457) with individuals in
the maximal independent set (n1 = 274) in blue.

Table 4. Outcome auto-model parameters estimates for coding and pseudo-
likelihood estimators (excluding covariates) on the odds ratio scale. Confidence
intervals for PL estimators were not calculated as they were shown to have invalid
coverage in simulation studies.

Estimates 95% CI

Coding

Past incarceration status (individual) 2.12 [1.07, 4.21]
Past incarceration status (neighbors) 1.21 [0.52, 2.84]
HIV/STI/HCV status (neighbors) 3.07 [1.33, 7.09]

Pseudo-likelihood

Past incarceration status (individual) 2.36 –
Past incarceration status (neighbors) 0.97 –
HIV/STI/HCV status (neighbors) 2.62 –

and/or HCV (OR = 3.07 [95% CI: 1.33–7.09]). The PL point
estimates were similar to the coding results. The full results for
auto-model parameters from both the covariate and outcome
model are given in Appendix Figure 6. The network average
direct effect is 0.14 [95% CI: 0.02–0.28] when the proportion
of persons with prior history of incarceration is 0.50. There was
no significant evidence of a spillover effect of incarceration on
HIV/STI/HCV risk over the network, as increasing the propor-
tion of persons with a history of incarceration from 0 to 0.50
resulted in a negligible increase in average HIV/STI/HCV risk
of a person with no prior incarceration [D̂E = 0.04; 95% CI:
−0.06 to 0.14].

In the Appendix, we have included two alternate outcome
auto-model specifications that incorporate the number of sexual
and injection drug use partners for each person in the network.
In an infection disease setting, the number of partners should
in principle be accounted for in the analysis as it is likely a
confounder for the effect of incarceration (both individual and
neighbors’ status) on infection status (Khan et al. 2018). As
shown in the Appendix, adjusting for the number of network
ties (e.g., sexual and injection drug partners) did not change our
conclusions. Lastly, we performed two simulation studies based

on the NNAHRAY network under the sharp null. Results are
provided in the Appendix Tables 7 and 8.

7. Conclusion

We have described a new approach for evaluating causal effects
on a network of connected units. Our methodology relies on
the crucial assumption that accurate information on network
ties between observed units is available to the analyst, which
may not always be the case in practice. In fact, as demonstrated
in our simulation study, bias may ensue if information about
the network is incomplete, and therefore one fails to account
for all existing ties. In future work, we plan to further develop
our methods to appropriately account for uncertainty about the
underlying network structure.

Another limitation of the proposed approach is that it relies
heavily on parametric assumptions and as a result may be open
to bias due to model misspecification. Although this limitation
also applies to standard g-computation for iid settings which
nevertheless has gained prominence in epidemiology (Robins,
Hernán, and Siebert 2004; Taubman et al. 2009; Daniel, De
Stavola, and Cousens 2011), our parametric auto-models which
are inherently non-iid may be substantially more complex, as
they must appropriately account both for outcome and covariate
dependence, as well as for interference. Developing appropriate
goodness-of-fit tests for auto-models is clearly a priority for
future research. In addition, to further alleviate concerns about
modeling bias, we plan in future work to extend semiparametric
models such as structural nested models to the network context.
Such developments may offer a real opportunity for more robust
inference about network causal effects.
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