MCAA lecture 4
Let $X=\left(x_{n}, n \geqslant 0\right)$ be a Markov chain with state space S and transition matrix P.
Theorem (wither proof)
Assume X is irreducible.
Then X is positive-recurrent iff it admits a stationary distribution π; in this case, π is cinque.
Ergodic theorem
Assume X is ergodic (ie. irred., aper. \& positive-recurrent)
Then X admits a unique limiting \& stationary distributiantl.

Tools for the proof:

1. Total variation distance between two distributions

Def: Let μ \& ν be two distributions on the same state space S (ie. $0 \leq \mu_{i}, \nu_{i} \leq 1, \sum_{i \in S} \mu_{i}=\sum_{i \in S} \nu_{i}=1$) The total variation distance between $\mu \& \nu$ is:

$$
\| \mu-\nu u_{T V}=\sup _{A \subset S}|\mu(A)-\nu(A)| \quad\left\{\begin{array}{l}
\mu(A)=\sum_{i \in A} \mu_{i} \\
\nu(A)=\sum_{i \in A} \nu_{i}
\end{array}\right.
$$

$$
\begin{array}{ll}
0 \leq \| \mu-\nu u_{T V} \leq 1 \\
\uparrow & \hat{\imath} \\
\mu=\nu \quad \mu \& \nu \text { have disjoint support }\left(\begin{array}{ll}
\exists A C S & \text { st. } \\
\mu(A)=1 & \& \\
\nu & \nu(A)=0
\end{array}\right)
\end{array}
$$

- triangle inequality: $\| \mu-\pi U_{\pi \nu} \leqslant U \mu-\nu U_{T V}+U \nu-\pi U_{T \nu}$

$$
\text { - } \| \mu-\nu u_{T V}=\frac{1}{2} \sum_{i \in S}\left|\mu_{i}-\nu_{i}\right|
$$

2. Coupling between two distributions

Def: Let μ, ν be two distributions an S. A cauphing between $\mu \& \nu$ is a par of randan variables (x, y) with a jaunt distribution on $S \times S$ such that $\mathbb{P}(X=i)=\mu_{i} \quad \forall i \in S \quad \& \quad \mathbb{P}(Y=j)=\nu_{j} \quad \forall j \in S$

Rok: Far a given part ($\mu, \nu)$, there are multiple couplings!

Example:

$$
S=\{0,1\} \quad \mu_{0}=\mu_{1}=\frac{1}{2} \quad V_{0}=\nu_{1}=\frac{1}{2}
$$

a) Choose X, Y independently with $\mathbb{P}(X=i, y=j)=\frac{1}{4} \quad \forall i, j \in S$
b) Choose X, Y such that $\mathbb{P}(X=Y=0)=\mathbb{P}(x=y=1)=\frac{1}{2}$ In this case, $x=4$.
C) Choose X, Y such that $\mathbb{P}(X=0, Y=1)=\mathbb{P}(X=1, y=0)=\frac{1}{2}$

Proposition
For every coupling (x, y) of $\mu \& \nu$, we hove:

$$
U M-\nu U_{T V} \leqslant \mathbb{P}(x \neq y)
$$

Proof
Let A be any subset of S :

$$
\begin{gathered}
\mu(A)=\mathbb{P}(x \in A)=\mathbb{P}(x \in A, y \in A)+\mathbb{P}\left(x \in A, y \in A^{c}\right) \\
\nu(A)=\mathbb{P}(y \in A)=\mathbb{P}(x \in A, y \in A)+\mathbb{P}\left(x \in A^{c}, y \in A\right) \\
\mu(A)-\nu(A)=\mathbb{P}\left(x \in A, y \in A^{c}\right)-\mathbb{P}\left(x \in A^{c}, y \in A\right) \\
\leqslant \mathbb{P}\left(x \in A, y \in A^{c}\right) \leq \mathbb{P}(x \neq y) \\
\nu(A)-\mu(A)=\mathbb{P}\left(x \in A^{c}, y \in A\right)-\mathbb{P}\left(x \in A, y \in A^{c}\right) \\
\leq \mathbb{P}\left(x \in A^{c}, y \in A\right) \leq \mathbb{P}(x \neq y)
\end{gathered}
$$

So $\forall A \subset S,|\mu(A)-\nu(A)| \leqslant \mathbb{P}(x \neq y)$
So $V M-v U_{T V}=\sup _{A C S}|\mu(A)-\nu(A)| \leq \mathbb{P}(X \neq Y)$

Coupling of Markov chains
Let X, Y be two Marka chains defined an the same state space S and with the same transition matrix P, but with initial distributions $\pi^{(0)}=\mu$ and $\pi^{(0)}=\nu$, respectively. The distributions of these two chains are given by:

$$
P\left(X_{n}=i\right)=\left(\mu \cdot P^{n}\right) ; \quad P\left(y_{n}=i\right)=\left(\nu \cdot P^{n}\right) ; \quad \text { i SS }
$$

Capping of X and Y (one possibility):
Let $\left(z_{n}=\left(x_{n}, y_{n}\right), n \geqslant 0\right)$ be the process on the state space $S \times S$ defined as:

$$
\text { - } \mathbb{R}\left(Z_{0}=(i, k)\right)=\mu_{i} \cdot \nu_{k} \quad i, k \in S
$$

- X,Y evolve independently (according to P) as long as $X_{n} \neq Y_{n}$ ("statistical coupling")
- As soon as $X_{n}=Y_{n}$, then the two processes coalesce ie. $X_{m}=Y_{m} \quad b_{m} \geqslant n$, and they evolve together according to P. ("grand coupling")

Def: $\tau_{\text {couple }}=\inf \left\{n \geqslant 1: X_{n}=Y_{n}\right\}$ cauphing time

Lemma: $\|\underbrace{\mu P^{n}}_{\text {dist.of } x_{n}}-\underbrace{\nu P^{n}}_{\text {dist of } I_{n}}\|_{T V} \leqslant \mathbb{P}\left(\tau_{\text {caple }}>n\right)$
Proof: $\cdot \mu P^{n}, \nu P^{n}$ are both distributias an S

- $z_{n}=\left(x_{n}, y_{n}\right)$ is a cauphing of these tuo distribatians
- by the proposition abave:

$$
H_{\mu} P^{n}-\nu P^{n} U_{T V} \leq \mathbb{P}\left(x_{n} \neq Y_{n}\right)=\mathbb{P}\left(\tau_{\text {caple }}>n\right)
$$

because of aur choice of couphing!

Proof of the ergodic theorem
Reminder: to be proven: $\frac{\pi \text { stat. dist. }}{\pi}$ is a limiting distribution, ie.

$$
\forall \pi^{(0)}, \lim _{n \rightarrow \infty} \pi_{i}^{(n)}=\bar{\pi}_{i} \quad \forall i \in S
$$

\rightarrow (when $|s|=+\infty)$
Actually, we will prase the slightly stranger statement:

$$
\forall \bar{\pi}^{(0)}, \lim _{n \rightarrow \infty} \underbrace{U \pi^{(n)}-\bar{\pi} U_{T V}}_{=\frac{1}{2} \sum_{i \in S}\left(\bar{u}_{i}^{(n)}-\bar{u}_{i}\right)}=0
$$

Let X be the chain with trans. matrix P \& init. dist. $\pi^{(6)}$ 4 be the chain n \& mit. dist. π

Then $\bar{\pi}_{i}^{(n)}=P\left(x_{n}=i\right)=\left(\pi^{(0)} \cdot P^{n}\right)_{i}$

$$
\mathbb{P}\left(y_{n}=i\right)=\left(\pi \cdot P^{n}\right)_{i}=\bar{u}_{i}
$$

So by the lemma:

$$
\begin{aligned}
& n \pi^{(n)}-\pi U_{\pi v}=U\left(\pi^{(0)} P^{n}\right)-\left(\pi P^{n}\right) U_{T V} \xrightarrow{\text { to be }} \text { prove! } \\
& \leqslant \mathbb{P}\left(x_{n} \neq Y_{n}\right)=\mathbb{P}\left(\tau_{\text {caple }}>n\right) \xrightarrow[n \rightarrow \infty]{?} 0
\end{aligned}
$$

This is equivalent to proing that $\mathbb{P}\left(\tau_{\text {capple }}<+\infty\right)=1$:
Indeed: $\mathbb{P}\left(\tau_{\text {caple }}<+\infty\right)=1-\mathbb{P}\left(\tau_{\text {caple }}=+\infty\right)$

$$
=1-\mathbb{P}\left(\bigcap_{n \geqslant 1}\left\{\tau_{\text {cande }}>n\right\}\right)=1-\lim _{n \rightarrow \infty} \mathbb{P}\left(\tau_{\text {caple }}>n\right)
$$

So $\frac{\mathbb{P}\left(\tau_{\text {caple }}<+\infty\right)=1}{4}$ iff $\lim _{n \rightarrow \infty} \mathbb{P}\left(\tau_{\text {caple }}>n\right)=0$ \#

Let $\left(Z_{n}=\left(x_{n}, y_{n}\right), n \geqslant 0\right)$ be the coupled chain before coalescence (only statistical coupling).
Step 1: Z is positive-recurrent

- Z is a Marka chain on the state space $S \times S$ with transition probabilities:

$$
\mathbb{P}\left(Z_{n+1}=(j, e) \mid Z_{n}=(i, k)\right)=p_{i j} \cdot P_{k e} \quad(\text { indef. })
$$

- Z is irreducible:
\triangle it is not only because X, Y are irreducible!

Fact: $\{$ If a chain X is irreducible and aperiodic, then

$$
\left\{\forall i, j \in S, \exists N(i, j) \geqslant 1 \text { st. } P_{i j}(n)>0 \quad \forall_{n} \geqslant N(i, j)\right.
$$

(Comes from: if $\operatorname{gcd}(a, b)=1$, then $\{n a+m b ; n, m \geqslant 1\}$ Contains $\{N, N+1, N+2, \ldots\}$ for same $N \geqslant 1$)

Thus, for z, we have:

$$
\forall(i, k),(j, e) \in S \times S, \exists N(i k, j l)=\max (N(i, j), N(k, e))
$$

such that $\mathbb{P}\left(Z_{n}=(j l) \mid Z_{0}=(i k)\right)=\underbrace{P_{i j}(n)}_{>0} \cdot \underbrace{P_{k e}(n) \quad \forall n \geqslant N(i k, j l)}_{>0}$
So Z is irreducible and aperiodic.

- Z admits a stationary distribution: $\mathbb{T}_{i k}=\pi_{i} \cdot \pi_{k} \quad \forall i, k \in S$

$$
\begin{aligned}
\sum_{i, k \in S} \pi_{i k}\left(P_{i j} \cdot P_{k e}\right)=\sum_{i \in S} \pi_{i} p_{i j} \cdot \sum_{k} \pi_{k} P_{k e} & =\bar{\pi}_{j} \pi_{e} \\
& =\bar{u}_{i j}
\end{aligned}
$$

- By the first theorem, Z is positive-recurrent.

Step 2: $\mathbb{P}\left(\tau_{\text {caple }}<+\infty \mid Z_{0}=(j l)\right)=1 \quad \forall j, l \in S$
Z is posinve-recurrent means: $\mathbb{P}\left(T_{(i k)<+\infty} \mid Z_{0}=(i k)\right)=1$ bikeS

$$
T_{(i k)}=\inf \left\{n \geqslant 1: z_{n}=(i k)\right\}
$$

This implies that $\mathbb{P}\left(T_{(i k)}<+\infty \mid z_{0}=(j l)\right)=1 \quad \forall i j k, j, p \in S$

Indeed: $\mathbb{P}\left(T_{(i k)}=+\infty \mid Z_{0}=(k)\right)=0 \quad(\Leftrightarrow$ pos-rec. $)$

$$
=P\left(T_{(i k)}=+\infty \mid Z_{0}=(j e)\right) \text { hime-hamogeneity }
$$

So $P\left(T_{(i k)}=+\infty \mid Z_{0}=(j l)\right)=0 \quad \forall i j, k, l \in S$.
Nav, consider $i=k: ~ P\left(\underline{T_{(i i)}}<+\infty \mid Z_{0}=(j l)\right)=1 \quad \forall_{i j l} \ell S$
As $\tau_{\text {caple }} \leqslant T_{\text {(ii) }}$ tieS, this implies that

$$
\begin{equation*}
\mathbb{P}\left(\tau_{\text {cauple }}<+\infty\left(z_{0}=(j, l)\right)=1 \quad \forall_{j} l \in S\right. \tag{It}
\end{equation*}
$$

$$
\begin{aligned}
& \geqslant \mathbb{P}\left(T_{(i k)}=+\infty, Z_{n}=(j e) \mid Z_{0}=(i k)\right) \\
& \text { cousidern } \\
& \text { s.t. } \\
& =\underbrace{P\left(Z_{0}=(i k)\right)}_{P\left(T(i n)=+\infty \mid Z_{n}=(j e)\right.} \cdot \underbrace{P(i k, j e(n)}_{>0} \\
& \text { Pik, je } e^{(n)>0}
\end{aligned}
$$

