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Remarks :

- A stationary distribution is a solution of a system of linear

equations ;
it is nd necessarily the case that Kya Th ' =D

- it may not exist in same cases

- T may not be unique in some other cases

- practical remark : in the system of N equations it

⇐TP
( assume IS kN)

,

there is always are redundant equation ;
in order to determine T
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we need to use also the condition Es Ti  
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Mathematical remark :

• Define I =

" all - ones
" column vector

Then P .
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stochastic matrix
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So I is an eigenvector of the matrix P ( an the right ) with

corresponding eigenvalue I
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then T is also an eigenvector of P ( an the left ) with

the same eigenvalue I
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Theorem C without proof ]

( et X be an irreducible Marka chair
.

Then X is positive - recurrent⑦X admits a stationary distribution T

In addition
,

in this case
, if a exists

,
then it is Unique

and given by it
.
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Note: X is positive - recurrent ⇒ of dos
,

so Ti > o KIES

Corollary : A finiteirreducible chair always admits

a unique stationary distribution
.
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Proposition

If X is a

finiteirreducible

drain whose

transition matrix P is doubly stochastic
,

then it admits a unique stationary distribution a-

and it is uniform : it
;  = I ties ( IS kN )
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Back to the example
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The thin also says that it ;  = Im.
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Counter
- example

Symmetric simple random walk an Z :

irreducible
,

recurrent but null - recurrent

Let us prove that the chair is null
- recurrent using

the theorem : look for a stationary distribution IT :

IT = TP i.e .

tie Z a- ;
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The uniform distribution does not exist a Z !

⇒ T does not exist ⇒ X is not positive - recurrent

Them

⇒ X is null - recurrent.
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What if the chair is not irreducible ?

. mo positive - recurrent classes :

⇒ a stationary distribution exists

but is not unique
?
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• two positive - recurrent classes and are transient class :
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Limiting distribution

Definition : A distribution it is a hunting distribution

for the Markov chair ( xn
,

ns.o ) if
Hirth - at distribution To )

, whiff a-
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Remarks :

- such a hunting distribution may not exist

-
but if it exists

,

then it is unique !

- if it is a hunting distribution
,

then it is a stationary dist
.
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DEI A Markov chain is ergodic if it is irreducible
,

ftp.erfed.IE
and positive - recurrent

.

Ergodic theorem

Let X be an ergodic Markov chair
.

Then it admits a unique hunting and stationary
distribution T

,
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Remark
: aperiodicity matters !

Ex : consider the drain ① P = ( Ioh )
periodicity = 2

stationary distribution ? ten . P → THE
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Modified ex :

E
a > o P = ( EnI )

finite
,

irreducible
, aperiodic chair

- }⇒ ergodic
⇒ positive - recurrent

⇒ I ! it = hunting I stationary distribution ✓

Last remark : So can 't we say anything for a periodic chair ?

Yes we can ! ( irreducible & positive - recurrent )
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