Solutions of the final exam

Please pay attention to the presentation of your answers! (3 points)

Exercise 1. Quiz. (21 points)

Answer each yes/no question below (1 pt) and provide a short justification (proof or counterexample) for your answer (2 pts).
a) Let X_{1}, X_{2}, X_{3} be three random variables, such that for every $1 \leq i \leq 3, X_{i}$ takes values in $\{-1,+1\}$ and $\mathbb{P}\left(\left\{X_{i}=+1\right\}\right)=\mathbb{P}\left(\left\{X_{i}=-1\right\}\right)=1 / 2$. Is it the case that $\sigma\left(X_{1}+X_{2}, X_{1}+X_{3}\right)=$ $\sigma\left(X_{1}, X_{2}, X_{3}\right)$?

Answer: No, The set $\left\{X_{1}=+1, X_{2}=-1, X_{3}=-1\right\}$ does belong to $\sigma\left(X_{1}, X_{2}, X_{3}\right)$, but not to $\sigma\left(X_{1}+X_{2}, X_{1}+X_{3}\right)$.
b) Let X, Y be two random variables such that $X^{2} \geq Y^{2}$ almost surely, $\mathbb{E}(X)=\mathbb{E}(Y)$ and $\mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)$. Does it necessarily hold that $X=Y$ almost surely ?

Answer: No. Take any non-trivial and square-integrable random variable X and $Y=-X$.
c) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous cdf and $G: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as

$$
G(t)= \begin{cases}1-F(1 / t) & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Is it always the case that G is a also a cdf ?
Answer: No. $\lim _{t \rightarrow+\infty} G(t)=1-F(0)$, and $F(0)$ is not necessarily equal to 0 .
d) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as

$$
\phi(t)= \begin{cases}1 & \text { if }|t| \leq 1 \\ 2-|t| & \text { if } 1 \leq|t| \leq 2 \\ 0 & \text { if }|t| \geq 2\end{cases}
$$

Is ϕ a characteristic function ?
Hint: Consider the 3×3 matrix $\left\{A_{i j}=\phi\left(t_{i}-t_{j}\right)\right\}_{i, j=1}^{3}$ with $t_{1}=-1, t_{2}=0$ and $t_{3}=+1$.
Answer: No. $\operatorname{det}(A)=-1<0$, so A is not positive semi-definite.
e) Do there exist two non-deterministic and i.i.d. random variables X, Y such that $X+Y$ and $2 X$ have the same distribution?

Answer: Yes. Take two i.i.d. Cauchy random variables (with both infinite variances!).
f) Let $\left(Y_{n}, n \in \mathbb{N}\right)$ and $\left(Z_{n}, n \in \mathbb{N}\right)$ be two sequences of random variables. Let us also define, for $n \in \mathbb{N}$:

$$
\mathcal{F}_{n}=\sigma\left(\sum_{j=0}^{k} Y_{j} Z_{k-j}, 0 \leq k \leq n\right)
$$

Is $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ a filtration ?
Answer: Yes. Defining $X_{n}=\sum_{j=0}^{n} Y_{j} Z_{n-j}$, we see that $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ is the natural filtration of the process X.
g) Let $\left(X_{n}, n \in \mathbb{N}\right)$ be a sequence of random variables and $\left(\mathcal{F}_{n}^{X}, n \in \mathbb{N}\right)$ be its natural filtration. Let also

$$
T=\inf \left\{n \in \mathbb{N}: X_{n}>X_{n+1}\right\}
$$

Is T a stopping time with respect to the filtration $\left(\mathcal{F}_{n}^{X}, n \in \mathbb{N}\right)$?
Answer: No. The event $\{T=n\}$ depends on X_{n+1} in general and is therefore not \mathcal{F}_{n}-measurable.

Exercise 2. (25 points + BONUS 3 points)

Let $\left(Z_{n}, n \geq 1\right)$ be a sequence of i.i.d. $\sim \mathcal{N}(0,1)$ random variables. Let also $a \in \mathbb{R}$ and let ($X_{n}, n \in \mathbb{N}$) be the stochastic process defined recursively as

$$
X_{0}=0, \quad X_{n+1}=a X_{n}+Z_{n+1}, \quad n \geq 0
$$

Moreover, let $\left(Y_{n}, n \geq 1\right)$ be the sequence of random variables defined as

$$
Y_{n}=\sum_{j=0}^{n-1} X_{j} X_{j+1}, \quad n \geq 1
$$

a) Compute $\mathbb{E}\left(Y_{n}\right)$ for $n \geq 1$, and when $-1<a<+1$, compute $\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n} / n\right)$.

Answer: Let us first observe that $\mathbb{E}\left(X_{n}\right)=0$; then compute $\mathbb{E}\left(X_{n}^{2}\right)$ and $\mathbb{E}\left(X_{n} X_{n+1}\right)$:

$$
\mathbb{E}\left(X_{n+1}^{2}\right)=a^{2} \mathbb{E}\left(X_{n}^{2}\right)+1, \quad \text { so } \quad \mathbb{E}\left(X_{n}\right)=1+a^{2}+\ldots+a^{2(n-1)}=\frac{1-a^{2 n}}{1-a^{2}}
$$

and

$$
\mathbb{E}\left(X_{n} X_{n+1}\right)=a \mathbb{E}\left(X_{n}^{2}\right)=a \frac{1-a^{2 n}}{1-a^{2}}
$$

Therefore,

$$
\mathbb{E}\left(Y_{n}\right)=\frac{a}{1-a^{2}} \sum_{j=0}^{n-1}\left(1-a^{2 j}\right)=\frac{a}{1-a^{2}}\left(n-\frac{1-a^{2 n}}{1-a^{2}}\right)
$$

which in turn implies that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n} / n\right)=\frac{a}{1-a^{2}}
$$

From now on, we assume that $\boldsymbol{a}=\mathbf{0}$.
b) Show that

$$
\frac{Y_{n}}{n} \xrightarrow[n \rightarrow \infty]{\stackrel{P}{\longrightarrow}} 0
$$

Answer: Use Chebyshev's inequality:

$$
\mathbb{P}\left(\left\{\left|\frac{Y_{n}}{n}\right| \geq \varepsilon\right\}\right) \leq \frac{\mathbb{E}\left(Y_{n}^{2}\right)}{n^{2} \varepsilon^{2}}
$$

and compute

$$
\mathbb{E}\left(Y_{n}^{2}\right)=\sum_{j, k=0}^{n-1} \mathbb{E}\left(X_{j} X_{j+1} X_{k} X_{k+1}\right)=\sum_{j=0}^{n-1} \mathbb{E}\left(X_{j}^{2}\right) \mathbb{E}\left(X_{j+1}^{2}\right)=n-1
$$

as only the terms $j=k$ "survive" in the above double sum (by independence of the X_{j} and the fact that $\left.\mathbb{E}\left(X_{i}\right)=0\right)$. This leads to the conclusion that

$$
\mathbb{P}\left(\left\{\left|\frac{Y_{n}}{n}\right| \geq \varepsilon\right\}\right)=O\left(\frac{1}{n}\right)
$$

i.e. convergence in probability.
c) Show that for $0 \leq s \leq \frac{1}{2}$, it holds that

$$
\mathbb{E}\left(\exp \left(s Y_{n}\right)\right) \leq \frac{1}{\left(\sqrt{1-2 s^{2}}\right)^{n}}
$$

Hint: Condition successively on $\mathcal{F}_{j}=\sigma\left(X_{1}, \ldots, X_{j}\right), j=n-1, n-2, \ldots, 1$ and use the inequalities:

$$
\mathbb{E}(\exp (s z X)) \leq \mathbb{E}\left(\exp \left(s z X+s^{2} X^{2}\right)\right) \stackrel{(*)}{\leq} \frac{1}{\sqrt{1-2 s^{2}}} \exp \left(s^{2} z^{2}\right)
$$

valid for $0 \leq s \leq \frac{1}{2}, z \in \mathbb{R}$ and $X \sim \mathcal{N}(0,1)$. Please note that the first inequality is obvious; it is useful in the first step of the computation.

Answer: Conditioning on \mathcal{F}_{n-1}, we obtain

$$
\mathbb{E}\left(\exp \left(s Y_{n}\right)\right)=\mathbb{E}\left(\exp \left(s Y_{n-1}\right) \mathbb{E}\left(\exp \left(s X_{n-1} X_{n}\right) \mid \mathcal{F}_{n-1}\right)\right)=\mathbb{E}\left(\exp \left(s Y_{n-1}\right) \varphi\left(X_{n-1}\right)\right)
$$

where $\varphi(z)=\mathbb{E}\left(\exp \left(s z X_{n}\right)\right) \leq \frac{\exp \left(s^{2} z^{2}\right)}{\sqrt{1-2 s^{2}}}$ by the hint. The next step gives

$$
\begin{aligned}
& \mathbb{E}\left(\exp \left(s Y_{n}\right)\right) \leq \frac{1}{\sqrt{1-2 s^{2}}} \mathbb{E}\left(\exp \left(s Y_{n-1}+s^{2} X_{n-1}^{2}\right)\right) \\
& =\frac{1}{\sqrt{1-2 s^{2}}} \mathbb{E}\left(\exp \left(s Y_{n-2}\right) \mathbb{E}\left(\exp \left(s X_{n-2} X_{n-1}+s^{2} X_{n-1}^{2}\right) \mid \mathcal{F}_{n-2}\right)\right) \\
& =\frac{1}{\sqrt{1-2 s^{2}}} \mathbb{E}\left(\exp \left(s Y_{n-2}\right) \psi\left(X_{n-2}\right)\right)
\end{aligned}
$$

where $\psi(z)=\mathbb{E}\left(\exp \left(s z X_{n-1}+s^{2} X_{n-1}^{2}\right)\right) \leq \frac{\exp \left(s^{2} z^{2}\right)}{\sqrt{1-2 s^{2}}}$, again by the hint. Proceeding recursively, we reach the desired conclusion (remember that $x_{0}=0$).

BONUS: Prove the last inequality ($*$).

Answer:

$$
\begin{aligned}
& \mathbb{E}\left(\exp \left(s z X+s^{2} X^{2}\right)\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} d x \exp \left(-\frac{x^{2}}{2}+s z x+s^{2} x^{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} d x \exp \left(-\frac{1}{2}\left(1-2 s^{2}\right) x^{2}+s z x\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} d x \exp \left(-\frac{1}{2}\left(\sqrt{1-2 s^{2}} x+\frac{s z}{\sqrt{1-2 s^{2}}}\right)^{2}+\frac{1}{2} \frac{s^{2} z^{2}}{1-2 s^{2}}\right)=\frac{1}{\sqrt{1-2 s^{2}}} \exp \left(\frac{1}{2} \frac{s^{2} z^{2}}{1-2 s^{2}}\right) \\
& \leq \frac{\exp \left(s^{2} z^{2}\right)}{\sqrt{1-2 s^{2}}} \text { for } s \leq 1 / 2
\end{aligned}
$$

d) Deduce from there that for every $t>0$, there exists a constant $C>0$ (possibly depending on $t)$ such that for every $n \geq 1$,

$$
\mathbb{P}\left(\left\{Y_{n} \geq n t\right\}\right) \leq \exp (-C n)
$$

Hint: In order to simplify computations, you may use the inequality $-\log (1-x) \leq 2 x$, valid for $0 \leq x \leq \frac{1}{2}$.
Answer: As mentioned during the exam, the above hint should be ignored. By Chebyshev's inequality and c), we have for $0 \leq s \leq 1 / 2$:

$$
\mathbb{P}\left(\left\{Y_{n} \geq n t\right\}\right) \leq \frac{\mathbb{E}\left(\exp \left(s Y_{n}\right)\right.}{\exp (s n t)} \leq \frac{\exp (-s n t)}{\left(\sqrt{1-2 s^{2}}\right)^{n}}=\exp \left(-n\left(s t-\frac{1}{2} \log \left(1-2 s^{2}\right)\right)\right.
$$

Various arguments here allow to conclude: notably, one can observe graphically that for every $t>0$, there exists $0<s \leq 1 / 2$ depending on t such that

$$
C=s t-\frac{1}{2} \log \left(1-2 s^{2}\right)>0
$$

e) Is the process $\left(Y_{n}, n \geq 1\right)$ a martingale with respect to ($\mathcal{F}_{n}, n \geq 1$)? Justify.

Answer: Yes. Indeed, for each n, Y_{n} is integrable because the Z_{j} are Gaussian random variables, Y_{n} is \mathcal{F}_{n}-measurable, and

$$
\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}+X_{n} \mathbb{E}\left(X_{n+1}\right)=Y_{n}+0=Y_{n}
$$

Exercise 3. (25 points)

Let $0<\sigma<1$ and $\left(Z_{n}, n \in \mathbb{N}\right.$) be a collection of i.i.d. and zero-mean random variables such that $\operatorname{Var}\left(Z_{1}\right)=\sigma^{2}$ and $\left|Z_{n}(\omega)\right| \leq 1$ for all $n \in \mathbb{N}$ and $\omega \in \Omega$. Let also X, Y be the two stochastic processes defined recursively as

$$
\left\{\begin{array}{ll}
X_{0}=1, & X_{n+1}=X_{n}\left(1+Z_{n+1}\right), \\
Y_{0}=1, & \quad Y_{n+1}=Y_{n}\left(1-Z_{n+1}\right),
\end{array} \quad n \geq 0\right.
$$

a) Compute recursively $\operatorname{Cov}\left(X_{n}, Y_{n}\right)$ for $n \in \mathbb{N}$. Is this covariance increasing or decreasing with n ?

Answer: $\operatorname{Cov}\left(X_{n}, Y_{n}\right)=\mathbb{E}\left(X_{n} Y_{n}\right)-\mathbb{E}\left(X_{n}\right) \mathbb{E}\left(Y_{n}\right), \mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right)=1$ and

$$
\mathbb{E}\left(X_{n+1} Y_{n+1}\right)=\mathbb{E}\left(X_{n} Y_{n}\right) \mathbb{E}\left(1-Z_{n+1}^{2}\right)=\mathbb{E}\left(X_{n} Y_{n}\right)\left(1-\sigma^{2}\right)
$$

so $\mathbb{E}\left(X_{n} Y_{n}\right)=\left(1-\sigma^{2}\right)^{n}$ and $\operatorname{Cov}\left(X_{n}, Y_{n}\right)=\left(1-\sigma^{2}\right)^{n}-1$, decreasing in n.

Now, let $\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$ for $n \geq 1$, and

$$
M_{n}=X_{n}+Y_{n}, \quad n \geq 0
$$

b) Does it hold that $\left(M_{n}, n \in \mathbb{N}\right)$ is a Markov process with respect to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$, i.e. that

$$
\mathbb{E}\left(g\left(M_{n+1}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(g\left(M_{n+1}\right) \mid M_{n}\right)
$$

for every $n \geq 0$ and $g \in C_{b}(\mathbb{R})$? Justify.
Answer: No. $M_{n+1}=X_{n+1}+Y_{n+1}=\left(X_{n}+Y_{n}\right)+\left(X_{n}-Y_{n}\right) Z_{n+1}=M_{n}+\left(X_{n}-Y_{n}\right) Z_{n+1}$. The random variable M_{n+1} can therefore not be written as a simple function of M_{n} and Z_{n+1}; the process M is not a Markov process.
c) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.

Answer: By induction, M_{n} is integrable and \mathcal{F}_{n}-measurable. Also

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=X_{n} \mathbb{E}\left(1+Z_{n+1}\right)+Y_{n} \mathbb{E}\left(1-Z_{n+1}\right)=X_{n}+Y_{n}=M_{n}
$$

d) Compute the process $\left(A_{n}, n \in \mathbb{N}\right)$ defined recursively as

$$
A_{0}=0, \quad A_{n+1}=A_{n}+\mathbb{E}\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)-M_{n}^{2}, \quad n \geq 0
$$

Answer:

$$
A_{n+1}-A_{n}=M_{n}^{2}+0+\left(X_{n}-Y_{n}\right)^{2} \mathbb{E}\left(Z_{n+1}^{2}\right)-M_{n}^{2}=\sigma^{2}\left(X_{n}-Y_{n}\right)^{2}
$$

so $A_{n}=\sigma^{2} \sum_{j=0}^{n-1}\left(X_{j}-Y_{j}\right)^{2}$.
e) What do you know about the process $\left(M_{n}^{2}-A_{n}, n \in \mathbb{N}\right)$?

Answer: It is a martingale.
f) Does there exist a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{ } M_{\infty}$ almost surely ? Justify.

Answer: Yes, as M is a non-negative martingale (second version of the martingale convergence theorem).
g) Does there exist a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{L^{2}} M_{\infty}$? Justify.

Answer: No, as $\operatorname{Var}\left(M_{n}\right)=\operatorname{Var}\left(X_{n}+Y_{n}\right)=\operatorname{Var}\left(X_{n}\right)+\operatorname{Var}\left(Y_{n}\right)+2 \operatorname{Cov}\left(X_{n}, Y_{n}\right)$ and by induction, we have

$$
\operatorname{Var}\left(X_{n}\right)=\operatorname{Var}\left(Y_{n}\right)=\left(1+\sigma^{2}\right)^{n}
$$

and $\operatorname{Cov}\left(X_{n}, Y_{n}\right) \rightarrow-1$ and $n \rightarrow \infty$ by part a). So $\operatorname{Var}\left(M_{n}\right)$ goes to $+\infty ; L^{2}$-convergence cannot happen.

Exercise 4. (16 points)

Let $M=\left(M_{n}, n \in \mathbb{N}\right)$ be a stochastic process defined recursively as follows:

$$
M_{0}=x<0, \quad M_{n+1}= \begin{cases}\frac{3 M_{n}+1}{2} & \text { with probability } \frac{1}{2} \\ \frac{M_{n}}{2} & \text { with probability } \frac{1}{2}\end{cases}
$$

a) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is submartingale.

Answer: For each $n \in \mathbb{N}, M_{n}$ is integrable, as it takes only a finite number fo values, and

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\frac{1}{2} \frac{3 M_{n}+1}{2}+\frac{1}{2} \frac{M_{n}}{2}=M_{n}+\frac{1}{4} \geq M_{n}
$$

(where $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ is the natural filtration of M).

Let us now consider the stopping time $T=\inf \left\{n \geq 1: M_{n} \geq 0\right\}$, as well as the stopped submartingale $N=M^{T}$ defined as

$$
N_{n}=M_{n}^{T}=M_{T \wedge n}=M_{\min (T, n)} \quad \text { for } n \in \mathbb{N}
$$

b) Explain why there exists a random variable N_{∞} such that $N_{n} \underset{n \rightarrow \infty}{\rightarrow} N_{\infty}$ almost surely.

Answer: N is a submartingale, which by definition is bounded above by the value $1 / 2$, so

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(N_{n}^{+}\right) \leq \frac{1}{2}<+\infty
$$

and by the second version of the martingale convergence theorem (to be more precise: its generalization to submartingales), N_{∞} exists.
c) Does it hold that $\mathbb{E}\left(N_{\infty} \mid \mathcal{F}_{n}\right)=N_{n}$ for every $n \in \mathbb{N}$? Justify.

Answer: No. As N is a (strict) submartingale, it will hit 0 with probability 1 , so $N_{\infty} \geq 0$, but $N_{0}=x<0$ by assumption, which makes the above equality impossible, at least for $n=0$.
d) To what interval in \mathbb{R} does the random variable N_{∞} belong ?

Remark: Of course, \mathbb{R} itself is a valid answer to the previous question, but we are actually asking here for the interval of minimal size to which N_{∞} is guaranteed to belong.
Answer: From the definition of T and the observation that from a negative value, N_{n} cannot move above $+1 / 2$ (excluded), we obtain that $N_{\infty} \in[0,1 / 2[$.

