Final exam

Please pay attention to the presentation of your answers! (3 points)

Exercise 1. Quiz. (21 points)

Answer each yes/no question below (1 pt) and provide a short justification (proof or counterexample) for your answer (2 pts).
a) Let X_{1}, X_{2}, X_{3} be three random variables, such that for every $1 \leq i \leq 3, X_{i}$ takes values in $\{-1,+1\}$ and $\mathbb{P}\left(\left\{X_{i}=+1\right\}\right)=\mathbb{P}\left(\left\{X_{i}=-1\right\}\right)=1 / 2$. Is it the case that $\sigma\left(X_{1}+X_{2}, X_{1}+X_{3}\right)=$ $\sigma\left(X_{1}, X_{2}, X_{3}\right)$?
b) Let X, Y be two random variables such that $X^{2} \geq Y^{2}$ almost surely, $\mathbb{E}(X)=\mathbb{E}(Y)$ and $\mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)$. Does it necessarily hold that $X=Y$ almost surely?
c) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous cdf and $G: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as

$$
G(t)= \begin{cases}1-F(1 / t) & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Is it always the case that G is a also a cdf ?
d) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as

$$
\phi(t)= \begin{cases}1 & \text { if }|t| \leq 1 \\ 2-|t| & \text { if } 1 \leq|t| \leq 2 \\ 0 & \text { if }|t| \geq 2\end{cases}
$$

Is ϕ a characteristic function?
Hint: Consider the 3×3 matrix $\left\{A_{i j}=\phi\left(t_{i}-t_{j}\right)\right\}_{i, j=1}^{3}$ with $t_{1}=-1, t_{2}=0$ and $t_{3}=+1$.
e) Do there exist two non-deterministic and i.i.d. random variables X, Y such that $X+Y$ and $2 X$ have the same distribution?
f) Let $\left(Y_{n}, n \in \mathbb{N}\right)$ and $\left(Z_{n}, n \in \mathbb{N}\right)$ be two sequences of random variables. Let us also define, for $n \in \mathbb{N}$:

$$
\mathcal{F}_{n}=\sigma\left(\sum_{j=0}^{k} Y_{j} Z_{k-j}, 0 \leq k \leq n\right)
$$

Is $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ a filtration ?
g) Let $\left(X_{n}, n \in \mathbb{N}\right)$ be a sequence of random variables and ($\left.\mathcal{F}_{n}^{X}, n \in \mathbb{N}\right)$ be its natural filtration. Let also

$$
T=\inf \left\{n \in \mathbb{N}: X_{n}>X_{n+1}\right\}
$$

Is T a stopping time with respect to the filtration $\left(\mathcal{F}_{n}^{X}, n \in \mathbb{N}\right)$?

Exercise 2. (25 points + BONUS 3 points)

Let $\left(Z_{n}, n \geq 1\right)$ be a sequence of i.i.d. $\sim \mathcal{N}(0,1)$ random variables. Let also $a \in \mathbb{R}$ and let ($X_{n}, n \in \mathbb{N}$) be the stochastic process defined recursively as

$$
X_{0}=0, \quad X_{n+1}=a X_{n}+Z_{n+1}, \quad n \geq 0
$$

Moreover, let $\left(Y_{n}, n \geq 1\right)$ be the sequence of random variables defined as

$$
Y_{n}=\sum_{j=0}^{n-1} X_{j} X_{j+1}, \quad n \geq 1
$$

a) Compute $\mathbb{E}\left(Y_{n}\right)$ for $n \geq 1$, and when $-1<a<+1$, compute $\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n} / n\right)$.

From now on, we assume that $\boldsymbol{a}=\mathbf{0}$.
b) Show that

$$
\frac{Y_{n}}{n} \xrightarrow[n \rightarrow \infty]{\stackrel{P}{\rightarrow}} 0
$$

c) Show that for $0 \leq s \leq \frac{1}{2}$, it holds that

$$
\mathbb{E}\left(\exp \left(s Y_{n}\right)\right) \leq \frac{1}{\left(\sqrt{1-2 s^{2}}\right)^{n}}
$$

Hint: Condition successively on $\mathcal{F}_{j}=\sigma\left(X_{1}, \ldots, X_{j}\right), j=n-1, n-2, \ldots, 1$ and use the inequalities:

$$
\mathbb{E}(\exp (s z X)) \leq \mathbb{E}\left(\exp \left(s z X+s^{2} X^{2}\right)\right) \stackrel{(*)}{\leq} \frac{1}{\sqrt{1-2 s^{2}}} \exp \left(s^{2} z^{2}\right)
$$

valid for $0 \leq s \leq \frac{1}{2}, z \in \mathbb{R}$ and $X \sim \mathcal{N}(0,1)$. Please note that the first inequality is obvious; it is useful in the first step of the computation.

BONUS: Prove the last inequality (*).
d) Deduce from there that for every $t>0$, there exists a constant $C>0$ (possibly depending on t) such that for every $n \geq 1$,

$$
\mathbb{P}\left(\left\{Y_{n} \geq n t\right\}\right) \leq \exp (-C n)
$$

Hint: In order to simplify computations, you may use the inequality $-\log (1-x) \leq 2 x$, valid for $0 \leq x \leq \frac{1}{2}$.
e) Is the process $\left(Y_{n}, n \geq 1\right)$ a martingale with respect to $\left(\mathcal{F}_{n}, n \geq 1\right)$? Justify.

Exercise 3. (25 points)

Let $0<\sigma<1$ and $\left(Z_{n}, n \in \mathbb{N}\right)$ be a collection of i.i.d. and zero-mean random variables such that $\operatorname{Var}\left(Z_{1}\right)=\sigma^{2}$ and $\left|Z_{n}(\omega)\right| \leq 1$ for all $n \in \mathbb{N}$ and $\omega \in \Omega$. Let also X, Y be the two stochastic processes defined recursively as

$$
\begin{cases}X_{0}=1, & X_{n+1}=X_{n}\left(1+Z_{n+1}\right), \quad n \geq 0 \\ Y_{0}=1, & Y_{n+1}=Y_{n}\left(1-Z_{n+1}\right), \quad n \geq 0\end{cases}
$$

a) Compute recursively $\operatorname{Cov}\left(X_{n}, Y_{n}\right)$ for $n \in \mathbb{N}$. Is this covariance increasing or decreasing with n ?

Now, let $\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$ for $n \geq 1$, and

$$
M_{n}=X_{n}+Y_{n}, \quad n \geq 0
$$

b) Does it hold that $\left(M_{n}, n \in \mathbb{N}\right)$ is a Markov process with respect to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$, i.e. that

$$
\mathbb{E}\left(g\left(M_{n+1}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(g\left(M_{n+1}\right) \mid M_{n}\right)
$$

for every $n \geq 0$ and $g \in C_{b}(\mathbb{R})$? Justify.
c) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to the filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
d) Compute the process $\left(A_{n}, n \in \mathbb{N}\right)$ defined recursively as

$$
A_{0}=0, \quad A_{n+1}=A_{n}+\mathbb{E}\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)-M_{n}^{2}, \quad n \geq 0
$$

e) What do you know about the process $\left(M_{n}^{2}-A_{n}, n \in \mathbb{N}\right)$?
f) Does there exist a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{\rightarrow} M_{\infty}$ almost surely ? Justify.
g) Does there exist a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{\stackrel{L^{2}}{\longrightarrow}} M_{\infty}$? Justify.

Exercise 4. (16 points)

Let $M=\left(M_{n}, n \in \mathbb{N}\right)$ be a stochastic process defined recursively as follows:

$$
M_{0}=x<0, \quad M_{n+1}= \begin{cases}\frac{3 M_{n}+1}{2} & \text { with probability } \frac{1}{2} \\ \frac{M_{n}}{2} & \text { with probability } \frac{1}{2}\end{cases}
$$

a) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is submartingale.

Let us now consider the stopping time $T=\inf \left\{n \geq 1: M_{n} \geq 0\right\}$, as well as the stopped submartingale $N=M^{T}$ defined as

$$
N_{n}=M_{n}^{T}=M_{T \wedge n}=M_{\min (T, n)} \quad \text { for } n \in \mathbb{N}
$$

b) Explain why there exists a random variable N_{∞} such that $N_{n} \underset{n \rightarrow \infty}{\rightarrow} N_{\infty}$ almost surely.
c) Does it hold that $\mathbb{E}\left(N_{\infty} \mid \mathcal{F}_{n}\right)=N_{n}$ for every $n \in \mathbb{N}$? Justify.
d) To what interval in \mathbb{R} does the random variable N_{∞} belong ?

Remark: Of course, \mathbb{R} itself is a valid answer to the previous question, but we are actually asking here for the interval of minimal size to which N_{∞} is guaranteed to belong.

