Corrigé question 23

2 points
$\left.\begin{array}{l}\text { D) est fermé } \\ \text { D est borné }\end{array}\right\}$ an D est compact
1 point

$$
\begin{aligned}
f: \mathbb{R}^{3} & \longrightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \longrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}
\end{aligned}
$$

est continue (car un prlynoime)
1 point 2 paints.
la restriction de f à D est une function continue (par la définition du curs)

1 point
(par le thecreme vi an curs.) use fonction continue sur un ensemble compact (est borne) et admet un matinum et un ininimum.

1 pant
Dist counexe par arc ("evident', pas de demonstration de mandée)

1 point
(par le theoreme vu au cours) (par le theaème des valeurs interméctiaire).
toule fonction continue sur un ensemble compact et comnexe par arcs admet Foules les valeurs daws lintervalle $[m, M] \equiv$ I où in est te minimum ef 17 le matimum. (absolu, global) de la fonction.

3 puints (calcul de met M)

$$
\left.\begin{array}{l}
H x \in D, f(x) \geqslant 0 \\
(0,0,1) \in D \quad(\text { cu simlaie }) \text { et } f(0,0,1)=0
\end{array}\right\} \Rightarrow
$$

Calcul de MI
$\underline{x \in Ð}: \nabla f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1} x_{2}^{2}, 2 x_{1}^{2} x_{2}, 0\right)^{\top}=0$

$$
\Rightarrow x_{1}=0 \text { or } x_{2}=0 \text {. }
$$

$$
\text { et. } f\left(0, x_{2}, x_{3}\right)=f\left(x_{1}, 0, x_{3}\right)=0
$$

$x \in D D^{0}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=19 C$.
cu $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4$.
Avec multiplicateur de Lagrage.

$$
F\left(x_{1}, x_{2}, x_{3}, \lambda\right)=x_{1}^{2} x_{2}^{2}-\lambda\left(C-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) .
$$

(1) $2 x_{1} x_{2}^{2}+2 \lambda x_{1}=0$
(2) $2 x_{1}^{2} x_{2}+2 \lambda x_{2}=0$.
(3) $2 \lambda x_{3}=0$
(4) $C-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=0$
(3) $\operatorname{cas} \lambda=0 \Rightarrow 2 x_{1} x_{2}^{2}=0 \Rightarrow f(\ldots)=0$
cas $x_{3}=0, x_{1} \neq 0, x_{2} \neq 0 \quad(\operatorname{sincn} f=0)$.
(1) $\lambda=x_{2}^{2} \underset{\text { (2) }}{\overrightarrow{2}} 2 x_{1}^{2} x_{2}-2 x_{2}^{3}=0$

$$
\Rightarrow \quad x_{1}^{2}=x_{2}^{2}
$$

$\Rightarrow \quad C-2 x_{2}^{2}=0 \Rightarrow x_{2}^{2}=\frac{C}{2}$

$$
\begin{aligned}
& \quad f\left(x_{1}, x_{2}, x_{3}\right)=\frac{c^{2}}{4} \leqslant \frac{4^{2}}{4}=4 \\
& I=[0,4]
\end{aligned}
$$

Corvigé question Q24
(a) 5 points
\Longleftarrow ("si") 3 points.
(*) $\left\{\begin{array}{l}\text { Supposons que toute scite convergente }\left(x_{k}\right), x_{b} \in X \text {, } \\ \text { converge vers un element de } X\end{array}\right.$ converge vers un efement de X.
Raisomement par l'absurde
Supposons (*) mais X pas fermé

$$
\begin{aligned}
\Rightarrow & \frac{X^{c} \text { pas ouvert. }}{} \\
\Rightarrow & \exists \bar{x} \in X^{c} \text { fel que. } \\
& \forall k \in \mathbb{N}, \exists X_{k} \in X \cap B\left(\bar{x}, \frac{1}{k}\right) .
\end{aligned}
$$

\Longrightarrow (definition de la limile) $\lim _{k \rightarrow \infty} x_{k}=\bar{x}$
$\underset{(X)}{\Rightarrow} \bar{x} \in X$ en contradiction avec $\bar{x} \in X^{c}$
" \Longrightarrow " (seulewent si) (2 points).
(*) $\left\{\begin{array}{l}\text { Sớl } X \text { fermé et }\left(X_{R}\right), ~ X_{R} \in X \text { une scuite. } \\ \text { lelle que lim } X_{R}=\bar{x} \in \mathbb{R}^{3} \text {. }\end{array}\right.$ Lelle que $\lim _{k \rightarrow \infty} x_{k}=\bar{x} \in \mathbb{R}^{3}$?

Raisonnement par e'afsurde.
Supposons (x) mais $\bar{x} \in X^{c}$. Vu que X^{c} est cuvert il efisle $\varepsilon>0$ lel que $B(x, \varepsilon) \cap X=\varnothing$. Mars par la definition de la limile. $\lim _{h \rightarrow \infty} x_{h}=\bar{x}$
it efiste $k_{0}>0$ tel que $t k \geqslant h_{0} x_{R} \in B(\bar{x}, \varepsilon)$ en contradiction avec $B(\bar{x}, \varepsilon) \cap X=\phi$. $\operatorname{Don} \bar{X} \in X$.
(b) 5 points.

Demonstration par l'absurde.
Soil P confinue sur un compact C, incis. I non barné, c'est a dire $H R \in \mathbb{N}^{\prime \prime}$, $\exists x_{k} \in C$ tel que. $\left|f\left(x_{k}\right)\right|>k$.
construction of sequance.
Cetant compact on peut extraire de X_{k} une sas-suite $\left(X_{k(p)}\right)_{p \geqslant 0}$ telte que.

1) la scuile $X_{k(p)}$ converge.
(par Boltano-Whierstrass el C borne).
N
ii) $\lim _{p \rightarrow \infty} x_{k(p)}=\bar{x} \in C$ car C ferme
voir (a)
Par la contimilé de f (en faít 1 lof) ona

$$
\lim _{p \rightarrow \infty}\left|f\left(x_{k(p)}\right)\right|=\left|f\left(\lim _{p \rightarrow \infty} x_{k(p)}\right)\right|=|f(\bar{x})|<\infty
$$

par definition de ce que c'est rune sas-scite. et on arrive à une contradiction.

Corrigé Q25
Soit le problème de Caurby

$$
\begin{aligned}
& y^{\prime}=2 x \cdot y^{2} \\
& y\left(x_{0}\right)=y_{0}
\end{aligned}
$$

ou $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.

Séparation des variables. (3ponits)
i) $y(x)=0$ es-l une solution sur $I=\mathbb{R}$.
on a existence et rinicile (locale), donc. en tout poírl du plan la solution est. unique.
$y(x)=0, x \in \mathbb{R}$ est la solution matinale
pour tait- condition initiale de la forme pour tair) condition initiale de la forme ($x_{0}, 0$)
ii)

$$
\begin{gathered}
\Gamma \frac{d y}{y^{2}}=x^{2} \\
-\frac{1}{y}=x^{2}+C . \quad C \in \mathbb{R} \\
y(x)=-\frac{1}{x^{2}+C} \\
y\left(x_{0}\right)=y_{0}=-\frac{1}{x_{0}^{2}+C} \\
C=-\frac{1}{y_{0}}-x_{0}^{2}
\end{gathered}
$$

$$
y(x)=-\frac{1}{-\frac{1}{y_{0}}-x_{0}^{2}+x^{2}}=\frac{1}{\frac{1}{y_{0}}+x_{0}^{2}-x^{2}}
$$

casI $\frac{1}{y_{0}}+x_{0}{ }^{2}=0$

$$
\begin{aligned}
y(x)=-\frac{1}{x^{2}} & x \in] 0,+\infty[\\
& \text { ar } x \in]-\infty, 0[.
\end{aligned}
$$

cas II: $\quad \frac{1}{y}+x_{0}^{2}<0$

$$
\begin{gathered}
y(t)=\frac{1}{\frac{1}{y_{0}}+\frac{1}{x_{0}^{2}}-x^{2}}, x \in \mathbb{R} . \\
\text { cas III: } \left.\quad \frac{1}{y_{0}}+x_{0}^{2}>0 \quad \quad x \in\right]-\sqrt{\frac{1}{y_{0}}+x_{0}^{2}}, \sqrt{y_{0}+x_{0}^{2}}[. \\
\\
\\
\\
\\
\\
\end{gathered}
$$

ou

$$
x \in]-\infty,-\sqrt{\frac{1}{y}+x_{0}^{2}}[
$$

Donc. résumé

Ip 0$)\left(x_{0}, 0\right): y(x)=0, x \in \mathbb{R}$.
ip ia) $\left(x_{0},-\frac{1}{x_{0}}\right), x_{0}>0: y(x)=-\frac{1}{x^{2}} \quad, x>0$
Ip if) $\left(x_{0},-\frac{1}{x_{0}^{2}}\right), x_{0}<0: y(-)=-\frac{1}{x^{2}} \quad, x<0$.
ii). $\frac{1}{y_{0}}+x_{0}^{2}<0 \Leftrightarrow \frac{1}{y_{0}}<-x_{0}^{2} \Leftrightarrow 0>y_{0}>-\frac{1}{x_{0}^{2}}$

Ip

$$
y(x)=\frac{1}{\frac{1}{y^{5}}+x_{0}^{2}-x^{2}}, x \in \mathbb{R} .
$$

Ip iiial $\underbrace{\frac{1}{y_{0}}+x_{0}^{2}}>0, y_{0}>0$

$$
=C^{2}, C>0 \quad y(x)=\frac{1}{C^{2}-x^{2}}, x \in J C_{1} C \Sigma .
$$

Ip iiib)

$$
\begin{aligned}
& y_{0}<0, x_{0}>0 \\
& \left.y(x)=\frac{1}{C^{2}-x^{2}}, x \in\right] C,+\infty L
\end{aligned}
$$

Ip iiic).

$$
\begin{aligned}
& y_{0}<0, x_{0}<0 \\
& \left.y(-1)=\frac{1}{c^{2}-x^{2}}, x \in\right]-\infty,-c[.
\end{aligned}
$$

