Problem 1: Whitening of a tensor

1. We have $M = U \text{Diag}(d_1, \ldots, d_K) U^T$ and, by definition, $W := U \text{Diag}(d_1^{-1/2}, \ldots, d_K^{-1/2})$. A direct computation gives:

$$W^{T}MW = \text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})(U^{T}U)\text{Diag}(d_{1}, \dots, d_{K})(U^{T}U)\text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})$$

= $\text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})\text{Diag}(d_{1}, \dots, d_{K})\text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})$
= I .

We used that the columns of U are orthogonal unit vectors: $U^T U = I$. By definition of \vec{v}_i , we have $V := \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_K \end{bmatrix} = W^T \mu \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_K})$ where $\mu := \begin{bmatrix} \vec{\mu}_1 & \cdots & \vec{\mu}_K \end{bmatrix}$. It also follows from the definition of M that $M = \mu \operatorname{Diag}(\lambda_1, \dots, \lambda_K)\mu^T$. Hence:

$$VV^{T} = W^{T} \mu \operatorname{Diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{K}}) \operatorname{Diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{K}}) \mu^{T} W$$
$$= W^{T} M W$$
$$= I .$$

The matrix V is square and satisfies $VV^T = I$, thefore $V^TV = I$ meaning that the vector \vec{v}_i are orthonormal.

2. Because M is known we can compute the matrix W and use it to obtained the whitened tensor $T(W, W, W) = \sum_{i=1}^{K} \nu_i \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$ where $\nu_i = \lambda_i^{-1/2}$ and $\vec{v}_i = \sqrt{\lambda_i} W^T \vec{\mu}_i$. We have shown in the previous question that $\vec{v}_1, \ldots, \vec{v}_K$ are orthogonal unit vectors. Thus, we can use the tensor power method to recover each of the pair $\pm(\nu_i, \vec{v}_i)$ for $i \in [K]$. Because $\nu_i > 0$ we can disambiguate the sign and determine (ν_i, \vec{v}_i) from $\pm(\nu_i, \vec{v}_i)$.

Now that all the (ν_i, \vec{v}_i) are known, we need to show that the whitening transformation can be inverted to give back $(\lambda_i, \vec{\mu}_i)$. The relation between λ_i and ν_i is easy to invert: $\lambda_i = 1/\nu_i^2$. To recover $\mu = \begin{bmatrix} \vec{\mu}_1 & \cdots & \vec{\mu}_K \end{bmatrix}$, we need to invert the system of equations

$$V = W^T \mu \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_K}) \Leftrightarrow V \operatorname{Diag}(\nu_1, \dots, \nu_K) = W^T \mu .$$
(1)

The matrix $W^T = \text{Diag}(d_1^{-1/2}, \ldots, d_K^{-1/2})U^T$ has full row rank and its Moore-Penrose pseudoinverse reads $(W^T)^{\dagger} = U\text{Diag}(\sqrt{d_1}, \ldots, \sqrt{d_K})$. Multiplying both sides of (1) by $(W^T)^{\dagger}$ yields:

$$(W^T)^{\dagger} V \operatorname{Diag}(\nu_1, \dots, \nu_K) = U U^T \mu .$$
⁽²⁾

At this point we might be tempted to say that $UU^T = I$, yielding $\mu = (W^T)^{\dagger} V \text{Diag}(\nu_1, \dots, \nu_K)$. However, U is in general not a square matrix and we cannot conclude $UU^T = I$ from $U^T U = I$. This is only a minor setback. Note that (the left-hand side is the definition of M, the right-hand side is its diagonalization):

$$\mu \text{Diag}(\lambda_1, \dots, \lambda_K) \mu^T = U \text{Diag}(d_1, \dots, d_K) U^T$$

where μ, U are $D \times K$ full column rank matrices. It follows that $\operatorname{span}(\mu) = \operatorname{span}(U)$ and there exists a $K \times K$ matrix P such that $\mu = UP$. Hence, $UU^T \mu = U(U^T U)P = UP = \mu$ and (2) reads:

$$\mu = (W^T)^{\dagger} V \operatorname{Diag}(\nu_1, \dots, \nu_K) = U \operatorname{Diag}(\sqrt{d_1}, \dots, \sqrt{d_K}) V \operatorname{Diag}(\nu_1, \dots, \nu_K) .$$

We are thus able to recover μ from the knowledge of W, V and $\text{Diag}(\nu_1, \ldots, \nu_K)$.