Neural Radiance Fields and Surfaces

Neural Radiance Fields

Optimize NeRF

Render new views

 \rightarrow

Multiple views of a complex scene

Input Images

📥 👬 🚧 🙀 👘 🕅

Mildenhall et al., ECCV'20

Neural Radiance Fields

A. Sampling 5D coordinates---location x, y, z and viewing direction θ , ϕ ---along camera rays.

- B. Feeding those locations into an MLP to produce a color and volume density.
- C. Using volume rendering techniques to composite these values into an image.
- D. Optimizing scene representation by minimizing the residual between synthesized and ground truth images.

Physically Inspired Volume Rendering

For a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$, the rendered color can be computed as

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt$$

Density Color
with $T(t) = \exp(-\int_{t_n}^{t_f} \sigma(\mathbf{r}(s))ds)$
Transparency

Neural Rendering

Given a few images of a tractor

Thresholding the Density

- Surfaces obtained by thresholding the density
- Choosing the threshold can be problematic

From NerF to NeuS

• Volume density is expressed a function of an SDF

• The reconstructed surfaces are smoother

From Interpolation to Reconstruction

Images of a shiny statue

View Interpolation

3D Reconstruction

(Lab

Reminder: Colonoscopy

0

Reminder: Endoscopic Lighting Model

- The light source is a spotlight that is co-located with the camera.
- It is close to the target surfaces.

—> Intensity decay as a function of $\frac{1}{d^2}$.

NeuS Pipeline

•Calibrating the endoscope.

• Explicitly incorporating light decay into the NeuS renderer.

Importance of Light Decay

Without LD

EPFL

With LD

-1cm

+1cm

Importance of Light Decay

Ground truth

Without LD

With LD

Properly modeling the physics matters!

