Neural Radiance Fields and Surfaces

Neural Radiance Fields

Multiple views of a complex scene

Neural Radiance Fields

- A. Sampling 5D coordinates---location x, y, z and viewing direction θ , ϕ ---along camera rays.
- B. Feeding those locations into an MLP to produce a color and volume density.
- C. Using volume rendering techniques to composite these values into an image.
- D. Optimizing scene representation by minimizing the residual between synthesized and ground truth images.

Physically Inspired Volume Rendering

For a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$, the rendered color can be computed as

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$
Density Color

with
$$T(t) = \exp(-\int_{tn}^{t_f} \sigma(\mathbf{r}(s))ds)$$
Transparency

Neural Rendering

Given a few images of a tractor

Thresholding the Density

- Surfaces obtained by thresholding the density
- Choosing the threshold can be problematic

From NerF to NeuS

- Volume density is expressed a function of an SDF
- The reconstructed surfaces are smoother

From Interpolation to Reconstruction

Images of a shiny statue

View Interpolation

3D Reconstruction

Reminder: Colonoscopy

Reminder: Endoscopic Lighting Model

- The light source is a spotlight that is co-located with the camera.
- It is close to the target surfaces.

—> Intensity decay as a function of $\frac{1}{d^2}$.

NeuS Pipeline

- Calibrating the endoscope.
- Explicitly incorporating light decay into the NeuS renderer.

Importance of Light Decay

Without LD

With LD

Importance of Light Decay

Ground truth

Without LD

With LD

Properly modeling the physics matters!

